Skip to main content

2024 | OriginalPaper | Buchkapitel

Exploring the Deep Learning Techniques in Plant Disease Detection: A Review of Recent Advances

verfasst von : Saurabh Singh, Rahul Katarya

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In agriculture, protecting crop yield is one of the most critical aspects of avoiding crop waste and ensuring food security around the world. One of the most critical aspects of preserving yield is protecting it from pests and plant diseases. With the advancement in the field of Artificial Intelligence (AI), it has been applied to different domains, and one such field is agriculture, where we can incorporate AI. Deep learning (DL), which is a subset of Artificial Intelligence, has gained lots of attention toward plant disease detection in the present day because of its better accuracy and performance in comparison with other techniques like machine learning (ML), etc. In this paper, we provide a comprehensive review of the current research work by utilizing deep learning for plant disease detection. We study the different models and architectures proposed by different authors and try to identify the pros and cons of the proposed methodology. We also discuss the various datasets that have been used in research work for detecting plant diseases. Finally, we describe the possible challenges in implementing deep learning models and discuss the future roadmap that can be followed by trying to identify the research gaps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anik R, Asif, SR, Sarker JR (2020) Five decades of productivity and efficiency changes in world agriculture (1969–2013). Agriculture 10(6):200 Anik R, Asif, SR, Sarker JR (2020) Five decades of productivity and efficiency changes in world agriculture (1969–2013). Agriculture 10(6):200
2.
Zurück zum Zitat Deshpande T (2017) State of agriculture in India. PRS Legislative Res 53(8):6–7 Deshpande T (2017) State of agriculture in India. PRS Legislative Res 53(8):6–7
3.
Zurück zum Zitat Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evolut 3(3):430–439 Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evolut 3(3):430–439
4.
Zurück zum Zitat Khan MR, Sharma RK (2020) Fusarium-nematode wilt disease complexes, etiology and mechanism of development. Ind Phytopathol 73(4):615–628 Khan MR, Sharma RK (2020) Fusarium-nematode wilt disease complexes, etiology and mechanism of development. Ind Phytopathol 73(4):615–628
5.
Zurück zum Zitat Hao X, Zhang G, Ma S (2016) Deep learning. Int J Semant Comput 10(03):417–439 Hao X, Zhang G, Ma S (2016) Deep learning. Int J Semant Comput 10(03):417–439
6.
Zurück zum Zitat Singh RS (2018) Plant diseases. Oxford and IBH Publishing Singh RS (2018) Plant diseases. Oxford and IBH Publishing
7.
Zurück zum Zitat Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8:1–74 Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8:1–74
8.
Zurück zum Zitat Gehlot M, Gandhi GC (2023) EffiNet-TS: a deep interpretable architecture using EfficientNet for plant disease detection and visualization. J Plant Diseases Protect 130(2):413–430 Gehlot M, Gandhi GC (2023) EffiNet-TS: a deep interpretable architecture using EfficientNet for plant disease detection and visualization. J Plant Diseases Protect 130(2):413–430
9.
Zurück zum Zitat Li M, Cheng S, Cui J, Li C, Li Z, Zhou C, Lv C (2023) High-performance plant pest and disease detection based on model ensemble with inception module and cluster algorithm. Plants 12(1):200CrossRef Li M, Cheng S, Cui J, Li C, Li Z, Zhou C, Lv C (2023) High-performance plant pest and disease detection based on model ensemble with inception module and cluster algorithm. Plants 12(1):200CrossRef
10.
Zurück zum Zitat Mahum R, Munir H, Mughal Z-U-N, Awais M, Khan FS, Saqlain M, Mahamad S, Tlili I (2023) A novel framework for potato leaf disease detection using an efficient deep learning model. Human and Ecological Risk Assessment: Int J 29(2):303–326 Mahum R, Munir H, Mughal Z-U-N, Awais M, Khan FS, Saqlain M, Mahamad S, Tlili I (2023) A novel framework for potato leaf disease detection using an efficient deep learning model. Human and Ecological Risk Assessment: Int J 29(2):303–326
11.
Zurück zum Zitat Yu S, Xie Li, Huang Q (2023) Inception convolutional vision transformers for plant disease identification. Internet of Things 21:100650CrossRef Yu S, Xie Li, Huang Q (2023) Inception convolutional vision transformers for plant disease identification. Internet of Things 21:100650CrossRef
12.
Zurück zum Zitat Ramamoorthy R, Saravana Kumar E, Naidu RCA, Shruthi K (2023) Reliable and accurate plant leaf disease detection with treatment suggestions using enhanced deep learning techniques. SN Comput Sci 4(2):158 Ramamoorthy R, Saravana Kumar E, Naidu RCA, Shruthi K (2023) Reliable and accurate plant leaf disease detection with treatment suggestions using enhanced deep learning techniques. SN Comput Sci 4(2):158
13.
Zurück zum Zitat Wang H, Shang S, Wang D, He X, Feng K, Zhu H (2022) Plant disease detection and classification method based on the optimized lightweight YOLOv5 model. Agriculture 12(7):931CrossRef Wang H, Shang S, Wang D, He X, Feng K, Zhu H (2022) Plant disease detection and classification method based on the optimized lightweight YOLOv5 model. Agriculture 12(7):931CrossRef
14.
Zurück zum Zitat Elaraby A, Hamdy W, Alruwaili M (2022) Optimization of deep learning model for plant disease detection using particle swarm optimizer. Comput Mater Cont 71(2) Elaraby A, Hamdy W, Alruwaili M (2022) Optimization of deep learning model for plant disease detection using particle swarm optimizer. Comput Mater Cont 71(2)
15.
Zurück zum Zitat Saleem MH, Potgieter J, Mahmood Arif K (2022) A performance-optimized deep learning-based plant disease detection approach for horticultural crops of New Zealand. IEEE Access 10:89798–89822 Saleem MH, Potgieter J, Mahmood Arif K (2022) A performance-optimized deep learning-based plant disease detection approach for horticultural crops of New Zealand. IEEE Access 10:89798–89822
16.
Zurück zum Zitat Shah D, Trivedi V, Sheth V, Shah A, Chauhan U (2022) ResTS: residual deep interpretable architecture for plant disease detection. Inf Proc Agricul 9(2):212–223 Shah D, Trivedi V, Sheth V, Shah A, Chauhan U (2022) ResTS: residual deep interpretable architecture for plant disease detection. Inf Proc Agricul 9(2):212–223
17.
Zurück zum Zitat Panchal AV, Patel SC, Bagyalakshmi K, Kumar P, Khan IR, Soni M (2023) Image-based plant diseases detection using deep learning. Mater Today: Proc 80:3500–3506 Panchal AV, Patel SC, Bagyalakshmi K, Kumar P, Khan IR, Soni M (2023) Image-based plant diseases detection using deep learning. Mater Today: Proc 80:3500–3506
18.
Zurück zum Zitat Thapa R, Zhang K, Snavely N, Belongie S, Khan A (2020) The plant pathology challenge 2020 data set to classify foliar disease of apples. Appl Plant Sci 8(9):e11390CrossRef Thapa R, Zhang K, Snavely N, Belongie S, Khan A (2020) The plant pathology challenge 2020 data set to classify foliar disease of apples. Appl Plant Sci 8(9):e11390CrossRef
19.
Zurück zum Zitat Fenu G, Malloci FM (2021) DiaMOS plant: a dataset for diagnosis and monitoring plant disease. Agronomy 11(11):2107 Fenu G, Malloci FM (2021) DiaMOS plant: a dataset for diagnosis and monitoring plant disease. Agronomy 11(11):2107
20.
Zurück zum Zitat Singh D, Jain N, Jain P, Kayal P, Kumawat S, Batra N (2020) PlantDoc: a dataset for visual plant disease detection. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp 249–253 Singh D, Jain N, Jain P, Kayal P, Kumawat S, Batra N (2020) PlantDoc: a dataset for visual plant disease detection. In: Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp 249–253
21.
Zurück zum Zitat Parraga-Alava J, Cusme K, Loor A, Santander E (2019) RoCoLe: a robusta coffee leaf images dataset for evaluation of machine learning based methods in plant diseases recognition. Data Brief 25:104414CrossRef Parraga-Alava J, Cusme K, Loor A, Santander E (2019) RoCoLe: a robusta coffee leaf images dataset for evaluation of machine learning based methods in plant diseases recognition. Data Brief 25:104414CrossRef
22.
Zurück zum Zitat Krohling RA, Esgario J, Ventura JA (2019) BRACOL–a Brazilian Arabica coffee leaf images dataset to identification and quantification of coffee diseases and pests. Mendeley Data 1 Krohling RA, Esgario J, Ventura JA (2019) BRACOL–a Brazilian Arabica coffee leaf images dataset to identification and quantification of coffee diseases and pests. Mendeley Data 1
23.
Zurück zum Zitat Hughes D, Salathe M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing Hughes D, Salathe M (2015) An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing
Metadaten
Titel
Exploring the Deep Learning Techniques in Plant Disease Detection: A Review of Recent Advances
verfasst von
Saurabh Singh
Rahul Katarya
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_21