Skip to main content
Erschienen in:

22.07.2024 | Technical report

Exploring the potential application of a custom deep learning model for camera trap analysis of local urban species

verfasst von: Somin Park, Mingyun Cho, Suryeon Kim, Jaeyeon Choi, Wonkyong Song, Wheemoon Kim, Youngkeun Song, Hyemin Park, Jonghyun Yoo, Seung Beom Seo, Chan Park

Erschienen in: Landscape and Ecological Engineering | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With increasing demands for biodiversity monitoring, the integration of camera trapping (CT) and deep learning automation holds significant promise. However, few studies have addressed the application potential of this approach in urban areas in Asia. 4064 CT images targeting 18 species of urban wildlife in South Korea were collected and used to fine-tune a pre-trained object detection model. The performance of the custom model was evaluated across three levels: animal filtering, mammal and bird classification, and species classification, to assess its applicability. A comparison with existing universal models was conducted to test the utility of the custom model. The custom model demonstrated approximately 94% and 85% accuracy in animal filtering and species classification, respectively, outperforming universal models in some aspects. In addition, recommendations regarding CT installation distances and the acquisition of nighttime data were provided. Importantly, these results have practical implications for terrestrial monitoring, especially focusing on the analysis of local species. Automating image filtering and species classification facilitates efficient analysis of large CT datasets and enables broader participation in wildlife monitoring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, … Research G (2016) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://arxiv.org/abs/1603.04467v2. Accessed 28 Mar 2024 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, … Research G (2016) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://​arxiv.​org/​abs/​1603.​04467v2. Accessed 28 Mar 2024
Zurück zum Zitat Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, Macgregor-Fors I, Mcdonnell M, Mörtberg U, Pyšek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc b: Biol Sci. https://doi.org/10.1098/RSPB.2013.3330CrossRef Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, Macgregor-Fors I, Mcdonnell M, Mörtberg U, Pyšek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc b: Biol Sci. https://​doi.​org/​10.​1098/​RSPB.​2013.​3330CrossRef
Zurück zum Zitat Chen G, Han TX, He Z, Kays R, Forrester T (2014) Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 858–862. Chen G, Han TX, He Z, Kays R, Forrester T (2014) Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 858–862.
Zurück zum Zitat Fennell M, Beirne C, Burton AC (2022) Use of object detection in camera trap image identification: assessing a method to rapidly and accurately classify human and animal detections for research and application in recreation ecology. Glob Ecol Conserv 35:e02104 Fennell M, Beirne C, Burton AC (2022) Use of object detection in camera trap image identification: assessing a method to rapidly and accurately classify human and animal detections for research and application in recreation ecology. Glob Ecol Conserv 35:e02104
Zurück zum Zitat Secretariat of the Convention on Biological Diversity (2012) Cities and Biodiversity Outlook. Montreal, Canada. Secretariat of the Convention on Biological Diversity (2012) Cities and Biodiversity Outlook. Montreal, Canada.
Zurück zum Zitat Zhu X, Liu W, Jia X, Wong KYK (2016) A two-stage detector for hand detection in ego-centric videos. In: 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016 [Preprint]. Zhu X, Liu W, Jia X, Wong KYK (2016) A two-stage detector for hand detection in ego-centric videos. In: 2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016 [Preprint].
Metadaten
Titel
Exploring the potential application of a custom deep learning model for camera trap analysis of local urban species
verfasst von
Somin Park
Mingyun Cho
Suryeon Kim
Jaeyeon Choi
Wonkyong Song
Wheemoon Kim
Youngkeun Song
Hyemin Park
Jonghyun Yoo
Seung Beom Seo
Chan Park
Publikationsdatum
22.07.2024
Verlag
Springer Japan
Erschienen in
Landscape and Ecological Engineering / Ausgabe 4/2024
Print ISSN: 1860-1871
Elektronische ISSN: 1860-188X
DOI
https://doi.org/10.1007/s11355-024-00618-5