Skip to main content
Erschienen in: Education and Information Technologies 6/2018

31.05.2018

Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work

verfasst von: Andri Ioannou, Eria Makridou

Erschienen in: Education and Information Technologies | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Educational robotics are increasingly appearing in educational settings, being considered a useful supporting tool for the development of cognitive skills, including Computational Thinking (CT), for students of all ages. Meanwhile, there is an overwhelming argument that CT will be a fundamental skill needed for all individuals by the middle of the twenty-first century and thus, should be cultivated in the early school years, as part of the child’s analytical thinking and as a principal component of Science-Technology-Engineering-Mathematics (STEM) education. This study reviews published literature at the intersection of CT and educational robotics, particularly focused on the use of educational robotics for advancing students’ CT skills in K-12. The reviewed articles reveal initial evidence suggesting that educational robotics can foster students’ cognitive and social skills. The paper discusses specific areas for further inquiry by learning researchers and learning practitioners. Such inquiry should start from a widely agreed definition of CT and validated measurement instruments for its assessment. A practical framework for the development of CT via robotics is next in demand, so as instructional designers and educators can implement it consistently and at scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63–71. Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63–71.
Zurück zum Zitat Almeida, L. D., & Tacla, C. A. (2015). Supporting the Development of Computational Thinking: A Robotic Platform Controlled by Smartphone. In Learning and Collaboration Technologies: Second International Conference, LCT 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2–7, 2015, Proceedings (Vol. 9192, p. 124). Springer. Almeida, L. D., & Tacla, C. A. (2015). Supporting the Development of Computational Thinking: A Robotic Platform Controlled by Smartphone. In Learning and Collaboration Technologies: Second International Conference, LCT 2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, August 2–7, 2015, Proceedings (Vol. 9192, p. 124). Springer.
Zurück zum Zitat Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47–57. Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47–57.
Zurück zum Zitat Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–670.CrossRef Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–670.CrossRef
Zurück zum Zitat Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.CrossRef Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.CrossRef
Zurück zum Zitat Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988.CrossRef Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978–988.CrossRef
Zurück zum Zitat Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628–647.CrossRef Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628–647.CrossRef
Zurück zum Zitat Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to understand the learning pathways of novice programmers. Journal of the Learning Sciences, 22(4), 564–599.CrossRef Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to understand the learning pathways of novice programmers. Journal of the Learning Sciences, 22(4), 564–599.CrossRef
Zurück zum Zitat Bers, M., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics in early childhood education. Information Technology in Childhood Education, 1, 123–145. Bers, M., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics in early childhood education. Information Technology in Childhood Education, 1, 123–145.
Zurück zum Zitat Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.CrossRef Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.CrossRef
Zurück zum Zitat Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada (pp. 1–25). Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada (pp. 1–25).
Zurück zum Zitat Czerkawski, B. (2015). Computational Thinking in Virtual Learning Environments. In Proceedings of E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2015 (pp. 993–997). Czerkawski, B. (2015). Computational Thinking in Virtual Learning Environments. In Proceedings of E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2015 (pp. 993–997).
Zurück zum Zitat Dillenbourg, P. (2013). Design for classroom orchestration. Computers and Education, 69, 485–492.CrossRef Dillenbourg, P. (2013). Design for classroom orchestration. Computers and Education, 69, 485–492.CrossRef
Zurück zum Zitat Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355–385.CrossRef Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355–385.CrossRef
Zurück zum Zitat Eguchi, A. (2010). What is Educational Robotics? Theories behind it and practical implementation. In Society for information technology & teacher education international conference (pp. 4006–4014). Jacksonville: Association for the Advancement of Computing in Education (AACE). Eguchi, A. (2010). What is Educational Robotics? Theories behind it and practical implementation. In Society for information technology & teacher education international conference (pp. 4006–4014). Jacksonville: Association for the Advancement of Computing in Education (AACE).
Zurück zum Zitat Eguchi, A. (2014a). Educational robotics for promoting 21st century skills. Journal of Automation Mobile Robotics and Intelligent Systems, 8(1), 5–11.CrossRef Eguchi, A. (2014a). Educational robotics for promoting 21st century skills. Journal of Automation Mobile Robotics and Intelligent Systems, 8(1), 5–11.CrossRef
Zurück zum Zitat Eguchi, A. (2014b). Learning experience through RoboCupJunior: Promoting STEM education and 21st century skills with robotics competition. In Proceedings of Society for Information Technology & Teacher Education International Conference. Eguchi, A. (2014b). Learning experience through RoboCupJunior: Promoting STEM education and 21st century skills with robotics competition. In Proceedings of Society for Information Technology & Teacher Education International Conference.
Zurück zum Zitat Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., ... & Laird, C. (2013). Assessment of computer science learning in a scratch-based outreach program. In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 371–376). ACM. Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len, M., ... & Laird, C. (2013). Assessment of computer science learning in a scratch-based outreach program. In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 371–376). ACM.
Zurück zum Zitat Grover, S. (2011). Robotics and engineering for middle and high school students to develop computational thinking. In annual meeting of the American Educational Research Association, New Orleans, LA. Grover, S. (2011). Robotics and engineering for middle and high school students to develop computational thinking. In annual meeting of the American Educational Research Association, New Orleans, LA.
Zurück zum Zitat Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43.CrossRef Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38–43.CrossRef
Zurück zum Zitat Harel, I. E., & Papert, S. E. (1991). Constructionism. Westport, CT: Ablex Publishing. Harel, I. E., & Papert, S. E. (1991). Constructionism. Westport, CT: Ablex Publishing.
Zurück zum Zitat Ioannou, I., & Angeli, C. (2016). A Framework and an Instructional Design Model for the Development of Students' Computational and Algorithmic Thinking. In MCIS (p. 19). Chicago. Ioannou, I., & Angeli, C. (2016). A Framework and an Instructional Design Model for the Development of Students' Computational and Algorithmic Thinking. In MCIS (p. 19). Chicago.
Zurück zum Zitat Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255.CrossRef Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255.CrossRef
Zurück zum Zitat Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the automatic recognition of computational thinking for adaptive visual language learning. In 2010 I.E. Symposium on Visual Languages and Human-Centric Computing (pp. 59–66). IEEE. Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the automatic recognition of computational thinking for adaptive visual language learning. In 2010 I.E. Symposium on Visual Languages and Human-Centric Computing (pp. 59–66). IEEE.
Zurück zum Zitat Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., & Almughyirah, S. (2016). Using robotics and game design to enhance Children’s self-efficacy, STEM attitudes, and computational thinking skills. Journal of Science Education and Technology, 25(6), 860–876.CrossRef Leonard, J., Buss, A., Gamboa, R., Mitchell, M., Fashola, O. S., Hubert, T., & Almughyirah, S. (2016). Using robotics and game design to enhance Children’s self-efficacy, STEM attitudes, and computational thinking skills. Journal of Science Education and Technology, 25(6), 860–876.CrossRef
Zurück zum Zitat Mikropoulos, T. A., & Bellou, I. (2013). Educational robotics as mindtools. Themes in Science and Technology Education, 6(1), 5–14. Mikropoulos, T. A., & Bellou, I. (2013). Educational robotics as mindtools. Themes in Science and Technology Education, 6(1), 5–14.
Zurück zum Zitat National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking. Washington, DC: The National Academies Press. National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking. Washington, DC: The National Academies Press.
Zurück zum Zitat National Research Council. (2011). Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: The National Academies Press. National Research Council. (2011). Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: The National Academies Press.
Zurück zum Zitat Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Zurück zum Zitat Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New York: Basic Books. Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New York: Basic Books.
Zurück zum Zitat Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 39(3.4), 720–729.CrossRef Papert, S. (2000). What's the big idea? Toward a pedagogy of idea power. IBM Systems Journal, 39(3.4), 720–729.CrossRef
Zurück zum Zitat Penmetcha, M. R. (2012). Exploring the effectiveness of robotics as a vehicle for computational thinking (Doctoral dissertation, Purdue University). Penmetcha, M. R. (2012). Exploring the effectiveness of robotics as a vehicle for computational thinking (Doctoral dissertation, Purdue University).
Zurück zum Zitat Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning. Journal of Research in Science Teaching, 2(3), 176–186.CrossRef Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning. Journal of Research in Science Teaching, 2(3), 176–186.CrossRef
Zurück zum Zitat Repenning, A., Webb, D., & Ioannidou, A. (2010) Scalable game design and the development of a checklist for getting computational thinking into public schools. In: Proceedings of the 41st ACM technical symposium on computer science education. Milwaukee, WI, pp 265–269. Repenning, A., Webb, D., & Ioannidou, A. (2010) Scalable game design and the development of a checklist for getting computational thinking into public schools. In: Proceedings of the 41st ACM technical symposium on computer science education. Milwaukee, WI, pp 265–269.
Zurück zum Zitat Resnick, M., Ocko, S., & Papert, S. (1988). LEGO, Logo, and design. Children's Environments Quarterly, 5, 14–18. Resnick, M., Ocko, S., & Papert, S. (1988). LEGO, Logo, and design. Children's Environments Quarterly, 5, 14–18.
Zurück zum Zitat Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678–691.CrossRef Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678–691.CrossRef
Zurück zum Zitat Schweikardt, E., & Gross, M. D. (2006). roBlocks: A robotic construction kit for mathematics and science education. In Proceedings of the 8th international conference on Multimodal interfaces (pp. 72–75). ACM. Schweikardt, E., & Gross, M. D. (2006). roBlocks: A robotic construction kit for mathematics and science education. In Proceedings of the 8th international conference on Multimodal interfaces (pp. 72–75). ACM.
Zurück zum Zitat Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary grade students. In Proceedings of the ninth annual international ACM conference on International computing education research (pp. 59–66). ACM. Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary grade students. In Proceedings of the ninth annual international ACM conference on International computing education research (pp. 59–66). ACM.
Zurück zum Zitat Sklar, E., Eguchi, A., & Johnson, J.. (2003). RoboCupJunior: Learning with educational robotics. RoboCup 2002: Robot soccer world cup VI, pp. 238–253.CrossRef Sklar, E., Eguchi, A., & Johnson, J.. (2003). RoboCupJunior: Learning with educational robotics. RoboCup 2002: Robot soccer world cup VI, pp. 238–253.CrossRef
Zurück zum Zitat Vallance, M., & Towndrow, P. A. (2016). Pedagogic transformation, student-directed design and computational thinking. Pedagogies: An International Journal, 11(3), 218–234.CrossRef Vallance, M., & Towndrow, P. A. (2016). Pedagogic transformation, student-directed design and computational thinking. Pedagogies: An International Journal, 11(3), 218–234.CrossRef
Zurück zum Zitat Verner, I. M., Waks, S., & Kolberg, E. (1999). Educational robotics: An insight into systems engineering. European Journal of Engineering Education, 24(2), 201–212.CrossRef Verner, I. M., Waks, S., & Kolberg, E. (1999). Educational robotics: An insight into systems engineering. European Journal of Engineering Education, 24(2), 201–212.CrossRef
Zurück zum Zitat Virnes, M., Sutinen, E., & Kärnä-Lin, E. (2008). How children's individual needs challenge the design of educational robotics. In Proceedings of the 7th international conference on Interaction design and children (pp. 274–281). ACM. Virnes, M., Sutinen, E., & Kärnä-Lin, E. (2008). How children's individual needs challenge the design of educational robotics. In Proceedings of the 7th international conference on Interaction design and children (pp. 274–281). ACM.
Zurück zum Zitat Wagner, S. P. (1998). Robotics and children: Science achievement and problem solving. Journal of Computing in Childhood Education, 9(2), 149–192.MathSciNet Wagner, S. P. (1998). Robotics and children: Science achievement and problem solving. Journal of Computing in Childhood Education, 9(2), 149–192.MathSciNet
Zurück zum Zitat Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.CrossRef Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.CrossRef
Zurück zum Zitat Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.MathSciNetCrossRef Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.MathSciNetCrossRef
Metadaten
Titel
Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work
verfasst von
Andri Ioannou
Eria Makridou
Publikationsdatum
31.05.2018
Verlag
Springer US
Erschienen in
Education and Information Technologies / Ausgabe 6/2018
Print ISSN: 1360-2357
Elektronische ISSN: 1573-7608
DOI
https://doi.org/10.1007/s10639-018-9729-z

Weitere Artikel der Ausgabe 6/2018

Education and Information Technologies 6/2018 Zur Ausgabe