Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 3/2022

17.01.2022

Extended Dissipative Criteria for Generalized Markovian Jump Neural Networks Including Asynchronous Mode-Dependent Delayed States

verfasst von: Ramasamy Saravanakumar, M. Syed Ali

Erschienen in: Neural Processing Letters | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This study scrutinizes the extended dissipative problem for Markovian jump generalized neural networks with asynchronous mode-dependent time-varying interval delayed states. A suitable Lyapunov–Krasovskii functional and a new bounding technique can derive delay-dependent results to achieve an extended dissipative performance index. Jensen’s inequality, reciprocally convex combination, and a novel integral inequality technique are utilized in this paper. The proposed criteria are reliable since many components are included in the unified neural network model, Markovian jumping, and time-varying delay with asynchronous modes. In this work, the systemic and time-varying delay modes are expressed asynchronously, which means that they depend on different jumping modes. Four numerical examples show the effectiveness and usefulness of the presented results.
Literatur
1.
Zurück zum Zitat Nie X, Cao J, Fei S (2019) Multistability and instability of competitive neural networks with non-monotonic piecewise linear activation functions. Nonlinear Anal Real World Appl 45:799–821 MathSciNetMATH Nie X, Cao J, Fei S (2019) Multistability and instability of competitive neural networks with non-monotonic piecewise linear activation functions. Nonlinear Anal Real World Appl 45:799–821 MathSciNetMATH
2.
Zurück zum Zitat Nie X, Liang J, Cao J (2019) Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays. Appl Math Comput 356:449–468 MathSciNetMATH Nie X, Liang J, Cao J (2019) Multistability analysis of competitive neural networks with Gaussian-wavelet-type activation functions and unbounded time-varying delays. Appl Math Comput 356:449–468 MathSciNetMATH
3.
Zurück zum Zitat Liu P, Nie X, Liang J, Cao J (2018) Multiple Mittag–Leffler stability of fractional-order competitive neural networks with Gaussian activation functions. Neural Netw 108:452–465 MATH Liu P, Nie X, Liang J, Cao J (2018) Multiple Mittag–Leffler stability of fractional-order competitive neural networks with Gaussian activation functions. Neural Netw 108:452–465 MATH
4.
Zurück zum Zitat Nie X, Liu P, Liang J, Cao J (2021) Exact coexistence and locally asymptotic stability of multiple equilibria for fractional-order delayed Hopfield neural networks with Gaussian activation function. Neural Netw 142:690–700 Nie X, Liu P, Liang J, Cao J (2021) Exact coexistence and locally asymptotic stability of multiple equilibria for fractional-order delayed Hopfield neural networks with Gaussian activation function. Neural Netw 142:690–700
5.
Zurück zum Zitat Wu ZG, Lam J, Su H, Chu J (2011) Stability and dissipativity analysis of static neural networks with time delay. IEEE Trans Neural Netw Learn Syst 23(2):199–210 Wu ZG, Lam J, Su H, Chu J (2011) Stability and dissipativity analysis of static neural networks with time delay. IEEE Trans Neural Netw Learn Syst 23(2):199–210
6.
Zurück zum Zitat Saravanakumar R, Ali MS, Cao J, Huang H (2016) \({H}_{\infty }\) state estimation of generalised neural networks with interval time-varying delays. Int J Syst Sci 47(16):3888–3899 MathSciNetMATH Saravanakumar R, Ali MS, Cao J, Huang H (2016) \({H}_{\infty }\) state estimation of generalised neural networks with interval time-varying delays. Int J Syst Sci 47(16):3888–3899 MathSciNetMATH
7.
Zurück zum Zitat Shao L, Huang H, Zhao H, Huang T (2015) Filter design of delayed static neural networks with markovian jumping parameters. Neurocomputing 153:126–132 Shao L, Huang H, Zhao H, Huang T (2015) Filter design of delayed static neural networks with markovian jumping parameters. Neurocomputing 153:126–132
8.
Zurück zum Zitat Tan H, Hua M, Chen J, Fei J (2015) Stability analysis of stochastic markovian switching static neural networks with asynchronous mode-dependent delays. Neurocomputing 151:864–872 Tan H, Hua M, Chen J, Fei J (2015) Stability analysis of stochastic markovian switching static neural networks with asynchronous mode-dependent delays. Neurocomputing 151:864–872
9.
Zurück zum Zitat Qi L, Shi K, Yang C, Wen S (2021) Mean square stabilization of neural networks with weighted try once discard protocol and state observer. Neural Process Lett 53(1):829–842 Qi L, Shi K, Yang C, Wen S (2021) Mean square stabilization of neural networks with weighted try once discard protocol and state observer. Neural Process Lett 53(1):829–842
10.
Zurück zum Zitat Wang Y, Cao J, Wang H (2021) State estimation for Markovian coupled neural networks with multiple time delays via event-triggered mechanism. Neural Process Lett 53(2):893–906 Wang Y, Cao J, Wang H (2021) State estimation for Markovian coupled neural networks with multiple time delays via event-triggered mechanism. Neural Process Lett 53(2):893–906
11.
Zurück zum Zitat Vidhya C, Dharani S, Balasubramaniam P (2020) Stability of impulsive stochastic reaction diffusion recurrent neural network. Neural Process Lett 51(2):1049–1060 Vidhya C, Dharani S, Balasubramaniam P (2020) Stability of impulsive stochastic reaction diffusion recurrent neural network. Neural Process Lett 51(2):1049–1060
12.
Zurück zum Zitat Liu X, Ho DW, Song Q, Xu W (2018) Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances. IEEE Trans Cybern 49(6):2398–2403 Liu X, Ho DW, Song Q, Xu W (2018) Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances. IEEE Trans Cybern 49(6):2398–2403
13.
Zurück zum Zitat Wu L, Feng Z, Zheng WX (2010) Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans Neural Netw 21(9):1396–1407 Wu L, Feng Z, Zheng WX (2010) Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans Neural Netw 21(9):1396–1407
14.
Zurück zum Zitat Saravanakumar R, Ali MS, Ahn CK, Karimi HR, Shi P (2016) Stability of markovian jump generalized neural networks with interval time-varying delays. IEEE Trans Neural Netw Learn Syst 28(8):1840–1850 MathSciNet Saravanakumar R, Ali MS, Ahn CK, Karimi HR, Shi P (2016) Stability of markovian jump generalized neural networks with interval time-varying delays. IEEE Trans Neural Netw Learn Syst 28(8):1840–1850 MathSciNet
15.
Zurück zum Zitat Saravanakumar R, Kang HS, Ahn CK, Su X, Karimi HR (2018) Robust stabilization of delayed neural networks: dissipativity-learning approach. IEEE Trans Neural Netw Learn Syst 30(3):913–922 MathSciNet Saravanakumar R, Kang HS, Ahn CK, Su X, Karimi HR (2018) Robust stabilization of delayed neural networks: dissipativity-learning approach. IEEE Trans Neural Netw Learn Syst 30(3):913–922 MathSciNet
16.
Zurück zum Zitat Shen H, Zhu Y, Zhang L, Park JH (2016) Extended dissipative state estimation for markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28(2):346–358 MathSciNet Shen H, Zhu Y, Zhang L, Park JH (2016) Extended dissipative state estimation for markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28(2):346–358 MathSciNet
17.
Zurück zum Zitat Liu X, Cao J (2010) Robust state estimation for neural networks with discontinuous activations. IEEE Trans Syst Man Cybern Part B (Cybern) 40(6):1425–1437 Liu X, Cao J (2010) Robust state estimation for neural networks with discontinuous activations. IEEE Trans Syst Man Cybern Part B (Cybern) 40(6):1425–1437
18.
Zurück zum Zitat Wu ZG, Shi P, Su H, Chu J (2014) Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans Cybern 44(12):2635–2645 Wu ZG, Shi P, Su H, Chu J (2014) Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans Cybern 44(12):2635–2645
19.
Zurück zum Zitat Hu S, Wang J (2002) Global stability of a class of continuous-time recurrent neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 49(9):1334–1347 MathSciNetMATH Hu S, Wang J (2002) Global stability of a class of continuous-time recurrent neural networks. IEEE Trans Circuits Syst I Fundam Theory Appl 49(9):1334–1347 MathSciNetMATH
20.
Zurück zum Zitat Liang XB, Wang J (2000) A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans Neural Netw 11(6):1251–1262 Liang XB, Wang J (2000) A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans Neural Netw 11(6):1251–1262
21.
Zurück zum Zitat Sun J, Chen J (2013) Stability analysis of static recurrent neural networks with interval time-varying delay. Appl Math Comput 221:111–120 MathSciNetMATH Sun J, Chen J (2013) Stability analysis of static recurrent neural networks with interval time-varying delay. Appl Math Comput 221:111–120 MathSciNetMATH
22.
Zurück zum Zitat Xu ZB, Qiao H, Peng J, Zhang B (2004) A comparative study of two modeling approaches in neural networks. Neural Netw 17(1):73–85 MATH Xu ZB, Qiao H, Peng J, Zhang B (2004) A comparative study of two modeling approaches in neural networks. Neural Netw 17(1):73–85 MATH
23.
Zurück zum Zitat Liang J, Cao J (2006) A based-on lmi stability criterion for delayed recurrent neural networks. Chaos Solitons Fract 28(1):154–160 MathSciNetMATH Liang J, Cao J (2006) A based-on lmi stability criterion for delayed recurrent neural networks. Chaos Solitons Fract 28(1):154–160 MathSciNetMATH
24.
Zurück zum Zitat Zeng HB, He Y, Wu M, Xiao SP (2015) Stability analysis of generalized neural networks with time-varying delays via a new integral inequality. Neurocomputing 161:148–154 Zeng HB, He Y, Wu M, Xiao SP (2015) Stability analysis of generalized neural networks with time-varying delays via a new integral inequality. Neurocomputing 161:148–154
25.
Zurück zum Zitat Zhang CK, He Y, Jiang L, Wu M (2015) Stability analysis for delayed neural networks considering both conservativeness and complexity. IEEE Trans Neural Netw Learn Syst 27(7):1486–1501 MathSciNet Zhang CK, He Y, Jiang L, Wu M (2015) Stability analysis for delayed neural networks considering both conservativeness and complexity. IEEE Trans Neural Netw Learn Syst 27(7):1486–1501 MathSciNet
26.
Zurück zum Zitat Saravanakumar R, Rajchakit G, Ahn CK, Karimi HR (2017) Exponential stability, passivity, and dissipativity analysis of generalized neural networks with mixed time-varying delays. IEEE Trans Syst Man Cybern Syst 49(2):395–405 Saravanakumar R, Rajchakit G, Ahn CK, Karimi HR (2017) Exponential stability, passivity, and dissipativity analysis of generalized neural networks with mixed time-varying delays. IEEE Trans Syst Man Cybern Syst 49(2):395–405
27.
Zurück zum Zitat Zhu Q, Cao J (2010) Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays. IEEE Trans Syst Man Cybern Part B (Cybern) 41(2):341–353 MathSciNet Zhu Q, Cao J (2010) Exponential stability of stochastic neural networks with both markovian jump parameters and mixed time delays. IEEE Trans Syst Man Cybern Part B (Cybern) 41(2):341–353 MathSciNet
28.
Zurück zum Zitat Liu Y, Wang Z, Liang J, Liu X (2012) Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays. IEEE Trans Cybern 43(1):102–114 Liu Y, Wang Z, Liang J, Liu X (2012) Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays. IEEE Trans Cybern 43(1):102–114
29.
Zurück zum Zitat Wu ZG, Shi P, Su H, Chu J (2013) Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data. IEEE Trans Cybern 43(6):1796–1806 Wu ZG, Shi P, Su H, Chu J (2013) Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data. IEEE Trans Cybern 43(6):1796–1806
30.
Zurück zum Zitat Zhang B, Zheng WX, Xu S (2013) Filtering of markovian jump delay systems based on a new performance index. IEEE Trans Circuits Syst I Regul Pap 60(5):1250–1263 MathSciNetMATH Zhang B, Zheng WX, Xu S (2013) Filtering of markovian jump delay systems based on a new performance index. IEEE Trans Circuits Syst I Regul Pap 60(5):1250–1263 MathSciNetMATH
31.
Zurück zum Zitat Wang X, She K, Zhong S, Cheng J (2016) On extended dissipativity analysis for neural networks with time-varying delay and general activation functions. Adv Differ Equ 2016(1):1–16 MathSciNetMATH Wang X, She K, Zhong S, Cheng J (2016) On extended dissipativity analysis for neural networks with time-varying delay and general activation functions. Adv Differ Equ 2016(1):1–16 MathSciNetMATH
32.
Zurück zum Zitat Lee TH, Park MJ, Park JH, Kwon OM, Lee SM (2014) Extended dissipative analysis for neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 25(10):1936–1941 Lee TH, Park MJ, Park JH, Kwon OM, Lee SM (2014) Extended dissipative analysis for neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 25(10):1936–1941
33.
Zurück zum Zitat Wei H, Li R, Chen C, Tu Z (2016) Extended dissipative analysis for memristive neural networks with two additive time-varying delay components. Neurocomputing 216:429–438 Wei H, Li R, Chen C, Tu Z (2016) Extended dissipative analysis for memristive neural networks with two additive time-varying delay components. Neurocomputing 216:429–438
34.
Zurück zum Zitat Feng Z, Zheng WX (2015) On extended dissipativity of discrete-time neural networks with time delay. IEEE Trans Neural Netw Learn Syst 26(12):3293–3300 MathSciNet Feng Z, Zheng WX (2015) On extended dissipativity of discrete-time neural networks with time delay. IEEE Trans Neural Netw Learn Syst 26(12):3293–3300 MathSciNet
35.
Zurück zum Zitat Liu Y, Wang Z, Liu X (2006) Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw 19(5):667–675 MATH Liu Y, Wang Z, Liu X (2006) Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw 19(5):667–675 MATH
36.
Zurück zum Zitat Park P, Ko JW, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238 MathSciNetMATH Park P, Ko JW, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238 MathSciNetMATH
37.
Zurück zum Zitat Trinh H et al (2015) An enhanced stability criterion for time-delay systems via a new bounding technique. J Frankl Inst 352(10):4407–4422 MathSciNetMATH Trinh H et al (2015) An enhanced stability criterion for time-delay systems via a new bounding technique. J Frankl Inst 352(10):4407–4422 MathSciNetMATH
38.
Zurück zum Zitat Cheng J, Zhu H, Zhong S, Zeng Y, Dong X (2013) Finite-time \({H}_{\infty }\) control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. ISA Trans 52(6):768–774 Cheng J, Zhu H, Zhong S, Zeng Y, Dong X (2013) Finite-time \({H}_{\infty }\) control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functionals. ISA Trans 52(6):768–774
39.
Zurück zum Zitat Li S, Ahn CK, Xiang Z (2018) Sampled-data adaptive output feedback fuzzy stabilization for switched nonlinear systems with asynchronous switching. IEEE Trans Fuzzy Syst 27(1):200–205 Li S, Ahn CK, Xiang Z (2018) Sampled-data adaptive output feedback fuzzy stabilization for switched nonlinear systems with asynchronous switching. IEEE Trans Fuzzy Syst 27(1):200–205
40.
Zurück zum Zitat Liu X, Chen T (2015) Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays. IEEE Trans Neural Netw Learn Syst 27(3):593–606 MathSciNet Liu X, Chen T (2015) Global exponential stability for complex-valued recurrent neural networks with asynchronous time delays. IEEE Trans Neural Netw Learn Syst 27(3):593–606 MathSciNet
41.
Zurück zum Zitat Chen J, Sun J, Liu G, Rees D (2010) New delay-dependent stability criteria for neural networks with time-varying interval delay. Phys Lett A 374(43):4397–4405 MathSciNetMATH Chen J, Sun J, Liu G, Rees D (2010) New delay-dependent stability criteria for neural networks with time-varying interval delay. Phys Lett A 374(43):4397–4405 MathSciNetMATH
42.
Zurück zum Zitat Wang JA, Ma XH, Wen XY (2015) Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach. Neurocomputing 155:146–152 Wang JA, Ma XH, Wen XY (2015) Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach. Neurocomputing 155:146–152
43.
Zurück zum Zitat Zeng HB, Park JH, Zhang CF, Wang W (2015) Stability and dissipativity analysis of static neural networks with interval time-varying delay. J Frankl Inst 352(3):1284–1295 MathSciNetMATH Zeng HB, Park JH, Zhang CF, Wang W (2015) Stability and dissipativity analysis of static neural networks with interval time-varying delay. J Frankl Inst 352(3):1284–1295 MathSciNetMATH
Metadaten
Titel
Extended Dissipative Criteria for Generalized Markovian Jump Neural Networks Including Asynchronous Mode-Dependent Delayed States
verfasst von
Ramasamy Saravanakumar
M. Syed Ali
Publikationsdatum
17.01.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10697-2

Weitere Artikel der Ausgabe 3/2022

Neural Processing Letters 3/2022 Zur Ausgabe