Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems | springerprofessional.de Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems

verfasst von : Katarzyna Juraszek, Nidhi Saini, Marcela Charfuelan, Holmer Hemsen, Volker Markl

Erschienen in: Advanced Analytics and Learning on Temporal Data

Verlag: Springer International Publishing

share
TEILEN

Abstract

The growing number of vessel data being constantly reported by a variety of remote sensors, such as the Automatic Identification System (AIS), requires new data analytics that can operate at high data rates and are highly scalable. Based on a real-world dataset from maritime transport, we propose a large scale vessel trajectory tracking application implemented in the distributed stream processing system Apache Flink. By implementing a state-space model (SSM) - the Extended Kalman Filter (EKF) - we firstly demonstrate that an implementation of SSMs is feasible in modern distributed data flow systems and secondly we show that we can reach a high performance by leveraging the inherent parallelization of the distributed system. In our experiments we show that the distributed tracking system is able to handle a throughput of several hundred vessels per ms. Moreover, we show that the latency to predict the position of a vessel is well below 500 ms on average, allowing for real-time applications.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
3.
Zurück zum Zitat Alessandrini, A., et al.: Mining vessel tracking data for maritime domain applications. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 361–367. IEEE (2016) Alessandrini, A., et al.: Mining vessel tracking data for maritime domain applications. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 361–367. IEEE (2016)
9.
Zurück zum Zitat Brandt, T., Grawunder, M.: Moving object stream processing with short-time prediction. In: Proceedings of the 8th ACM SIGSPATIAL Workshop on GeoStreaming, pp. 49–56. ACM (2017) Brandt, T., Grawunder, M.: Moving object stream processing with short-time prediction. In: Proceedings of the 8th ACM SIGSPATIAL Workshop on GeoStreaming, pp. 49–56. ACM (2017)
10.
11.
Zurück zum Zitat Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008) CrossRef Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008) CrossRef
12.
Zurück zum Zitat He, B., et al.: Comet: batched stream processing for data intensive distributed computing. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 63–74. ACM (2010) He, B., et al.: Comet: batched stream processing for data intensive distributed computing. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 63–74. ACM (2010)
13.
Zurück zum Zitat Jwo, D.J., Wang, S.H.: Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sens. J. 7(5), 778–789 (2007) CrossRef Jwo, D.J., Wang, S.H.: Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sens. J. 7(5), 778–789 (2007) CrossRef
14.
Zurück zum Zitat Karimov, J., Rabl, T., Katsifodimos, A., Samarev, R., Heiskanen, H., Markl, V.: Benchmarking distributed stream data processing systems. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1507–1518. IEEE (2018) Karimov, J., Rabl, T., Katsifodimos, A., Samarev, R., Heiskanen, H., Markl, V.: Benchmarking distributed stream data processing systems. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1507–1518. IEEE (2018)
15.
Zurück zum Zitat Kelly, A.: A 3D state space formulation of a navigation Kalman filter for autonomous vehicles. Technical report, Carnegie-Mellon University Pittsburgh PA Robotics Institute (1994) Kelly, A.: A 3D state space formulation of a navigation Kalman filter for autonomous vehicles. Technical report, Carnegie-Mellon University Pittsburgh PA Robotics Institute (1994)
16.
Zurück zum Zitat Korn, U.: A simple method for modelling changes over time. Casualty Actuarial Society E-Forum (2018) Korn, U.: A simple method for modelling changes over time. Casualty Actuarial Society E-Forum (2018)
17.
Zurück zum Zitat Lee, J.W., Kim, M.S., Kweon, I.S.: A Kalman filter based visual tracking algorithm for an object moving in 3D. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 342–347. IEEE (1995) Lee, J.W., Kim, M.S., Kweon, I.S.: A Kalman filter based visual tracking algorithm for an object moving in 3D. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 342–347. IEEE (1995)
19.
Zurück zum Zitat Moussa, R.: Scalable maritime traffic map inference and real-time prediction of vessels’ future locations on apache spark. In: Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems, pp. 213–216. ACM (2018) Moussa, R.: Scalable maritime traffic map inference and real-time prediction of vessels’ future locations on apache spark. In: Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems, pp. 213–216. ACM (2018)
20.
Zurück zum Zitat Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012) MATH Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012) MATH
21.
Zurück zum Zitat Perera, L.P., Oliveira, P., Soares, C.G.: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Trans. Intell. Transp. Syst. 13(3), 1188–1200 (2012) CrossRef Perera, L.P., Oliveira, P., Soares, C.G.: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction. IEEE Trans. Intell. Transp. Syst. 13(3), 1188–1200 (2012) CrossRef
23.
Zurück zum Zitat Sheng, C., Zhao, J., Leung, H., Wang, W.: Extended Kalman filter based echo state network for time series prediction using mapreduce framework. In: 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks, pp. 175–180. IEEE (2013) Sheng, C., Zhao, J., Leung, H., Wang, W.: Extended Kalman filter based echo state network for time series prediction using mapreduce framework. In: 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks, pp. 175–180. IEEE (2013)
24.
Zurück zum Zitat Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.B.: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 19(5), 1559–1582 (2017) CrossRef Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., Huang, G.B.: Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 19(5), 1559–1582 (2017) CrossRef
Metadaten
Titel
Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems
verfasst von
Katarzyna Juraszek
Nidhi Saini
Marcela Charfuelan
Holmer Hemsen
Volker Markl
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39098-3_12

Premium Partner