Skip to main content
Erschienen in: Neural Computing and Applications 6/2016

01.08.2016 | Original Article

Extended least squares support vector machines for ordinal regression

verfasst von: Na Zhang

Erschienen in: Neural Computing and Applications | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We extend LS-SVM to ordinal regression, which has wide applications in many domains such as social science and information retrieval where human-generated data play an important role. Most current methods based on SVM for ordinal regression suffer from the problem of ignoring the distribution information reflected by the samples clustered around the centers of each class. This problem would degrade the performance of SVM-based methods since the classifiers only depend on the scattered samples on the border which induce large margin. Our method takes the samples clustered around class centers into account and has a competitive computational complexity. Moreover, our method would easily produce the optimal cut-points according to the prior class probabilities and hence may obtain more reasonable results when the prior class probabilities are not the same. Experiments on simulated datasets and benchmark datasets, especially on the real ordinal datasets, demonstrate the effectiveness of our method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In the original paper [27], the form of the classifier is \(y(x)=\text{ sign }[\omega ^\top \varphi (x)+b]\). Here, we use the classifier \(y(x)=\text{ sign }[\omega ^\top \varphi (x)-b]\) to keep consistence with Sect. 3.
 
2
The second term should be \(\alpha ^{\top }DKD\alpha\) after this substitution, but we use \(\Vert \alpha \Vert ^2\) instead for regularization and smoothing purpose as in [36, 39].
 
3
Since EBC is a framework of reducing ordinal regression problem to binary classification, the computational complexity varies from \(2N-n_1-n_K\) to KN when the parameters change.
 
4
The cut-points in this section are normalized by \(\frac{b_j}{\Vert w\Vert }\).
 
6
Because the partition for the first four datasets has been given by Chu, we just use these splits in our experiments for comparison purpose.
 
7
The datasets are available at the WEKA website (http://​www.​cs.​waikato.​ac.​nz/​ml/​index.​html).
 
Literatur
1.
Zurück zum Zitat Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, HeidelbergCrossRefMATH Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, HeidelbergCrossRefMATH
2.
Zurück zum Zitat Cruz-Ramirez M, Fernandez JC, Valero A, Gutierrez PA, Hervas-Martnez C (2013) Multiobjective Pareto ordinal classification for predictive microbiology. In: Snášel V, Abraham A, Corchado ES (eds) Soft computing models in industrial and environmental applications, Springer, Berlin, Heidelberg, pp 153–162 Cruz-Ramirez M, Fernandez JC, Valero A, Gutierrez PA, Hervas-Martnez C (2013) Multiobjective Pareto ordinal classification for predictive microbiology. In: Snášel V, Abraham A, Corchado ES (eds) Soft computing models in industrial and environmental applications, Springer, Berlin, Heidelberg, pp 153–162
3.
Zurück zum Zitat Kramer S, Widmer G, Pfahringer B, DeGroeve M (2001) Prediction of ordinal classes using regression trees. Fundam Inf 47(1–2):1–13MathSciNetMATH Kramer S, Widmer G, Pfahringer B, DeGroeve M (2001) Prediction of ordinal classes using regression trees. Fundam Inf 47(1–2):1–13MathSciNetMATH
5.
Zurück zum Zitat McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Champman and Hall, LondonCrossRefMATH McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Champman and Hall, LondonCrossRefMATH
6.
Zurück zum Zitat Crammer K, Singer Y (2002) Pranking with ranking. In: Dietterich TG, Becher S, Ghahramani Z (eds) Advances in neural information processing systems 14, vol 1. MIT Press, Cambridge, pp 641–647 Crammer K, Singer Y (2002) Pranking with ranking. In: Dietterich TG, Becher S, Ghahramani Z (eds) Advances in neural information processing systems 14, vol 1. MIT Press, Cambridge, pp 641–647
7.
Zurück zum Zitat Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression. Advances in large margin classifiers. MIT Press, Cambridge Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression. Advances in large margin classifiers. MIT Press, Cambridge
9.
10.
Zurück zum Zitat Boser B, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifier. In: Proceedings of the fifth annual ACM workshop on computational learning research. ACM, pp 144–52 Boser B, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifier. In: Proceedings of the fifth annual ACM workshop on computational learning research. ACM, pp 144–52
11.
Zurück zum Zitat Vapnik V (1998) Statistical learning theory. Wiley, New YorkMATH Vapnik V (1998) Statistical learning theory. Wiley, New YorkMATH
12.
Zurück zum Zitat Cristianini N, Shawe-Taylor J (1999) An introduction to support vector machines. Cambridge University Press, CambridgeMATH Cristianini N, Shawe-Taylor J (1999) An introduction to support vector machines. Cambridge University Press, CambridgeMATH
13.
Zurück zum Zitat Gonzalez L, Angulo C, Velasco F, Catala A (2006) Dual unification of bi-class support vector machine formulations. Pattern Recognit 39(7):1325–1332CrossRefMATH Gonzalez L, Angulo C, Velasco F, Catala A (2006) Dual unification of bi-class support vector machine formulations. Pattern Recognit 39(7):1325–1332CrossRefMATH
14.
Zurück zum Zitat Xue H, Chen S, Yang Q (2011) Structural regularized support vector machine: a framework for structural large margin classifier. IEEE Trans Neural Netw 22(4):573–587CrossRef Xue H, Chen S, Yang Q (2011) Structural regularized support vector machine: a framework for structural large margin classifier. IEEE Trans Neural Netw 22(4):573–587CrossRef
15.
Zurück zum Zitat Kim S, Park YJ, Toh K, Lee S (2010) SVM-based feature extraction for face recognition. Pattern Recognit 43(8):2871–2881CrossRefMATH Kim S, Park YJ, Toh K, Lee S (2010) SVM-based feature extraction for face recognition. Pattern Recognit 43(8):2871–2881CrossRefMATH
16.
Zurück zum Zitat Chen Y, Su C, Yang T (2013) Rule extraction from support vector machines by genetic algorithms. Neural Comput Appl 23(3–4):729–739CrossRef Chen Y, Su C, Yang T (2013) Rule extraction from support vector machines by genetic algorithms. Neural Comput Appl 23(3–4):729–739CrossRef
17.
Zurück zum Zitat Rosillo R, Giner J, Fuente D (2014) The effectiveness of the combined use of VIX and support vector machines on the prediction of SP 500. Neural Comput Appl 22(2):321–332 Rosillo R, Giner J, Fuente D (2014) The effectiveness of the combined use of VIX and support vector machines on the prediction of SP 500. Neural Comput Appl 22(2):321–332
18.
Zurück zum Zitat Azar AT, El-Said SA (2014) Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl 24(5):1163–1177CrossRef Azar AT, El-Said SA (2014) Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl 24(5):1163–1177CrossRef
19.
Zurück zum Zitat Angulo C, Ruiz F, Gonzalez L, Ortega JA (2006) Multi-classification by using tri-class SVM. Neural Process Lett 23:90–101CrossRef Angulo C, Ruiz F, Gonzalez L, Ortega JA (2006) Multi-classification by using tri-class SVM. Neural Process Lett 23:90–101CrossRef
20.
Zurück zum Zitat Shashua A, Levin A (2003) Ranking with large margin principle: two approaches. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15, MIT Press, Cambridge, pp 961–968 Shashua A, Levin A (2003) Ranking with large margin principle: two approaches. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems 15, MIT Press, Cambridge, pp 961–968
21.
Zurück zum Zitat Zhao B, Wang F, Zhang C (2009) Block-quantized support vector ordinal regression. IEEE Trans Neural Netw 20(5):882–890CrossRef Zhao B, Wang F, Zhang C (2009) Block-quantized support vector ordinal regression. IEEE Trans Neural Netw 20(5):882–890CrossRef
22.
Zurück zum Zitat Pelckmans K, Karsmakers P, Suykens JAK, De Moor B (2006) Ordinal least squares support vector machines—a discriminant analysis approach. In: Proceedings of the machine learning for signal processing (MLSP 2006), pp 1–8 Pelckmans K, Karsmakers P, Suykens JAK, De Moor B (2006) Ordinal least squares support vector machines—a discriminant analysis approach. In: Proceedings of the machine learning for signal processing (MLSP 2006), pp 1–8
23.
Zurück zum Zitat Lin L, Lin HT (2007) Ordinal regression by extended binary classification. In: Advances in neural information processing systems 19. Proceedings of the 2006 Conference (NIPS 2006). MIT Press, pp 865–872 Lin L, Lin HT (2007) Ordinal regression by extended binary classification. In: Advances in neural information processing systems 19. Proceedings of the 2006 Conference (NIPS 2006). MIT Press, pp 865–872
24.
Zurück zum Zitat Cardoso JS, Pinto JF (2007) Learning to classify ordinal data: the data replication method. J Mach Learn Res 8:1393–1429MathSciNetMATH Cardoso JS, Pinto JF (2007) Learning to classify ordinal data: the data replication method. J Mach Learn Res 8:1393–1429MathSciNetMATH
25.
Zurück zum Zitat Sun BY, Li J, Wu DD (2010) Kernel discriminant learning for ordinal regression. IEEE Trans Knowl Data Eng 22(6):906–910CrossRef Sun BY, Li J, Wu DD (2010) Kernel discriminant learning for ordinal regression. IEEE Trans Knowl Data Eng 22(6):906–910CrossRef
26.
Zurück zum Zitat Kramer KA, Hall LO, Goldgof DB, Remsen A, Luo T (2009) Fast support vector machines for continuous data. IEEE Trans Syst Man Cybern Part B Cybern 39(4):989–1001CrossRef Kramer KA, Hall LO, Goldgof DB, Remsen A, Luo T (2009) Fast support vector machines for continuous data. IEEE Trans Syst Man Cybern Part B Cybern 39(4):989–1001CrossRef
27.
28.
Zurück zum Zitat Suykens JAK, van Gestel T, De Brabanter J (2002) Least squares support vector machines. World Scientific, SingaporeCrossRefMATH Suykens JAK, van Gestel T, De Brabanter J (2002) Least squares support vector machines. World Scientific, SingaporeCrossRefMATH
29.
Zurück zum Zitat Van Gestel T, Suykens JAK, Lanckriet G (2002) A Bayesian framework for least squares support vector machine classifiers, gaussian processes and Kernel Fisher discriminant analysis. Neural Comput 14(5):1115–1147CrossRefMATH Van Gestel T, Suykens JAK, Lanckriet G (2002) A Bayesian framework for least squares support vector machine classifiers, gaussian processes and Kernel Fisher discriminant analysis. Neural Comput 14(5):1115–1147CrossRefMATH
30.
Zurück zum Zitat Adankon MM, Cheriet M (2009) Model selection for the LS-SVM. Application to handwriting recognition. Pattern Recognit 42(12):3264–3270CrossRefMATH Adankon MM, Cheriet M (2009) Model selection for the LS-SVM. Application to handwriting recognition. Pattern Recognit 42(12):3264–3270CrossRefMATH
31.
Zurück zum Zitat Adankon MM, Cheriet M, Biem A (2011) Semisupervised learning using Bayesian interpretation: application to LS-SVM. IEEE Trans Neural Netw 22(4):513–524CrossRef Adankon MM, Cheriet M, Biem A (2011) Semisupervised learning using Bayesian interpretation: application to LS-SVM. IEEE Trans Neural Netw 22(4):513–524CrossRef
32.
33.
Zurück zum Zitat Williams CKI (1998) Prediction with Gaussian process: from linear regression to linear prediction and beyond. In: Jordan MI (ed) Learning and inference in graphical models. Kluwer Academic Press, Dordrecht Williams CKI (1998) Prediction with Gaussian process: from linear regression to linear prediction and beyond. In: Jordan MI (ed) Learning and inference in graphical models. Kluwer Academic Press, Dordrecht
34.
Zurück zum Zitat Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th International Conference on Machine Learning (ICML98), pp 515–521 Saunders C, Gammerman A, Vovk V (1998) Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th International Conference on Machine Learning (ICML98), pp 515–521
35.
Zurück zum Zitat Van Gestel T, Suykens JAK (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54:5–32CrossRefMATH Van Gestel T, Suykens JAK (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54:5–32CrossRefMATH
36.
Zurück zum Zitat Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. ACM Special Internet Group on Management of Data AAAI, ACM, New YorkCrossRefMATH Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. ACM Special Internet Group on Management of Data AAAI, ACM, New YorkCrossRefMATH
37.
Zurück zum Zitat Cevikalp H, Neamtu M, Barkana A (2007) The kernel common vector method: a novel nonlinear subspace classifier for pattern recognition. IEEE Trans Syst Man Cybern Part B Cybern 37(4):937–951CrossRef Cevikalp H, Neamtu M, Barkana A (2007) The kernel common vector method: a novel nonlinear subspace classifier for pattern recognition. IEEE Trans Syst Man Cybern Part B Cybern 37(4):937–951CrossRef
38.
Zurück zum Zitat Müller K-R, Mika S, Rätsch G (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRef Müller K-R, Mika S, Rätsch G (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRef
40.
Zurück zum Zitat Francis FB, Jordan MI (2005) Predictive low-rank decomposition for kernel methods. In: Proceedings of the 22nd international conference on machine learning (ICML2005), pp 33–40 Francis FB, Jordan MI (2005) Predictive low-rank decomposition for kernel methods. In: Proceedings of the 22nd international conference on machine learning (ICML2005), pp 33–40
41.
Zurück zum Zitat Gaudette L, Japkowicz N (2009) Evaluation methods for ordinal regression. Canadian AI 2009, LNAI 5549, pp 207–210 Gaudette L, Japkowicz N (2009) Evaluation methods for ordinal regression. Canadian AI 2009, LNAI 5549, pp 207–210
42.
Zurück zum Zitat Waegeman W, Baetsb BD, Boullarta L (2008) ROC analysis in ordinalregression learning. Pattern Recognit Lett 29(1):1–9CrossRef Waegeman W, Baetsb BD, Boullarta L (2008) ROC analysis in ordinalregression learning. Pattern Recognit Lett 29(1):1–9CrossRef
43.
Zurück zum Zitat Baccianella S, Esuli A, Sebastiani F (2009) Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications Baccianella S, Esuli A, Sebastiani F (2009) Evaluation measures for ordinal regression. In: 2009 Ninth international conference on intelligent systems design and applications
Metadaten
Titel
Extended least squares support vector machines for ordinal regression
verfasst von
Na Zhang
Publikationsdatum
01.08.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2016
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-1948-2

Weitere Artikel der Ausgabe 6/2016

Neural Computing and Applications 6/2016 Zur Ausgabe