Skip to main content

2018 | OriginalPaper | Buchkapitel

14. Extending the Precision

verfasst von : Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Serge Torres

Erschienen in: Handbook of Floating-Point Arithmetic

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Though satisfactory in most situations, the fixed-precision floating-point formats that are available in hardware or software in our computers may sometimes prove insufficient. There are reasonably rare cases when the binary64/decimal64 or binary128/decimal128 floating-point numbers of the IEEE 754 standard are too crude as approximations of the real numbers. Also, at the time of writing these lines, the binary128 and decimal128 formats are very seldom implemented in hardware.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
To our knowledge, the only commercially significant platform that has supported binary128 in hardware for the last decade has been the IBM z Systems [387].
 
2
Such as 2Sum (Algorithm 4.​4, page 108), Fast2Sum (Algorithm 4.​3, page 104), Dekker product (Algorithm 4.​10, page 116), and 2MultFMA (Algorithm 4.8, page 112).
 
3
Of course, when we write x h + x , the addition symbol corresponds to the exact, mathematical addition.
 
4
BLAS is an acronym for Basic Linear Algebra Subroutines.
 
7
By the way, “correct rounding” is not clearly defined for double-words: Does this mean that we get the double-word closest to the exact value, or that we get the 2p-digit number closest to the exact value (if the underlying arithmetic is of precision p)? This can be quite different. For instance, in radix-2, precision-p arithmetic, the double-word closest to a = 2 p + 2p + 2p−1 is a itself, whereas the precision-2p number closest to a is 2 p + 2p+1.
 
8
Note that even if the general idea remains the same, the notion of overlap slightly changes depending on the authors!
 
9
CRlibm was developed by the Arénaire/AriC team of CNRS, INRIA, UCBL and ENS Lyon, France. It is available at https://​gforge.​inria.​fr/​scm/​browser.​php?​group_​id=​5929&​extra=​crlibm.
 
10
INTLAB is the Matlab toolbox for self-validating algorithms; it is available at http://​www.​ti3.​tu-harburg.​de/​rump/​intlab/​.
 
12
NTL is a library for performing number theory, available at http://​www.​shoup.​net/​ntl/​.
 
14
GNU MP is available at https://​gmplib.​org/​.
 
15
MPFR is available at http://​www.​mpfr.​org/​.
 
16
The minimum precision was initially chosen as 2 because the ties-to-even rule was not defined for precision 1 in IEEE 754. But since this case can occur in conversions to character strings, a complete definition has been proposed for the 2018 revision (see Section 3.​1.​2.​1), and the minimum precision could be changed to 1 in MPFR, even though the context is different (there are no formats with 1-bit precision in IEEE 754).
 
17
Application Binary Interface, which specifies the sizes of the scalar types, in particular.
 
18
Fused multiply-subtract.
 
19
Some linkers will include only unresolved symbols seen so far in the command line, and the requisite GMP symbols are known only after -lmpfr has been taken into account.
 
20
This is how functions with a variable number of arguments are usually designed in C.
 
21
This can easily be detected dynamically, and one can choose to stop the iterations when this is no longer true, as the enclosing interval gets too wide to provide any interesting information.
 
22
The results are actually correctly rounded, so that even more precision may be needed, but the issue mainly comes from the accuracy requirement, and the future support for faithful arithmetic will not avoid it.
 
23
Arb is available at http://​arblib.​org/​.
 
Literatur
[26]
Zurück zum Zitat D. H. Bailey, R. Barrio, and J. M. Borwein. High precision computation: Mathematical physics and dynamics. Applied Mathematics and Computation, 218:10106–10121, 2012.MathSciNetCrossRef D. H. Bailey, R. Barrio, and J. M. Borwein. High precision computation: Mathematical physics and dynamics. Applied Mathematics and Computation, 218:10106–10121, 2012.MathSciNetCrossRef
[27]
Zurück zum Zitat D. H. Bailey and J. M. Borwein. Experimental mathematics: examples, methods and implications. Notices of the AMS, 52(5):502–514, 2005.MathSciNetMATH D. H. Bailey and J. M. Borwein. Experimental mathematics: examples, methods and implications. Notices of the AMS, 52(5):502–514, 2005.MathSciNetMATH
[28]
Zurück zum Zitat D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe. The quest for pi. Mathematical Intelligencer, 19(1):50–57, 1997.MathSciNetCrossRef D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe. The quest for pi. Mathematical Intelligencer, 19(1):50–57, 1997.MathSciNetCrossRef
[50]
Zurück zum Zitat S. Boldo, M. Joldeş, J.-M. Muller, and V. Popescu. Formal verification of a floating-point expansion renormalization algorithm. In 8th International Conference on Interactive Theorem Proving (ITP), Brasilia, Brazil, 2017.CrossRef S. Boldo, M. Joldeş, J.-M. Muller, and V. Popescu. Formal verification of a floating-point expansion renormalization algorithm. In 8th International Conference on Interactive Theorem Proving (ITP), Brasilia, Brazil, 2017.CrossRef
[58]
Zurück zum Zitat J. Borwein and D. H. Bailey. Mathematics by Experiment: Plausible Reasoning in the 21st Century. A. K. Peters, Natick, MA, 2004. J. Borwein and D. H. Bailey. Mathematics by Experiment: Plausible Reasoning in the 21st Century. A. K. Peters, Natick, MA, 2004.
[60]
Zurück zum Zitat W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. Journal of Symbolic Computation, 24(3–4):235–265, 1997.MathSciNetCrossRef W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. Journal of Symbolic Computation, 24(3–4):235–265, 1997.MathSciNetCrossRef
[64]
Zurück zum Zitat R. P. Brent. A FORTRAN multiple-precision arithmetic package. ACM Transactions on Mathematical Software, 4(1):57–70, 1978.CrossRef R. P. Brent. A FORTRAN multiple-precision arithmetic package. ACM Transactions on Mathematical Software, 4(1):57–70, 1978.CrossRef
[66]
Zurück zum Zitat R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2011. R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, 2011.
[129]
[133]
Zurück zum Zitat M. Daumas and C. Finot. Division of floating point expansions with an application to the computation of a determinant. Journal of Universal Computer Science, 5(6):323–338, 1999.MATH M. Daumas and C. Finot. Division of floating point expansions with an application to the computation of a determinant. Journal of Universal Computer Science, 5(6):323–338, 1999.MATH
[142]
Zurück zum Zitat F. de Dinechin, A. V. Ershov, and N. Gast. Towards the post-ultimate libm. In 17th IEEE Symposium on Computer Arithmetic (ARITH-17), pages 288–295, 2005. F. de Dinechin, A. V. Ershov, and N. Gast. Towards the post-ultimate libm. In 17th IEEE Symposium on Computer Arithmetic (ARITH-17), pages 288–295, 2005.
[148]
Zurück zum Zitat F. de Dinechin, C. Q. Lauter, and J.-M. Muller. Fast and correctly rounded logarithms in double-precision. Theoretical Informatics and Applications, 41:85–102, 2007.MathSciNetCrossRef F. de Dinechin, C. Q. Lauter, and J.-M. Muller. Fast and correctly rounded logarithms in double-precision. Theoretical Informatics and Applications, 41:85–102, 2007.MathSciNetCrossRef
[158]
Zurück zum Zitat T. J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik, 18(3):224–242, 1971.MathSciNetCrossRef T. J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik, 18(3):224–242, 1971.MathSciNetCrossRef
[186]
Zurück zum Zitat M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms and Implementations. Kluwer Academic Publishers, Boston, MA, 1994.MATH M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence Algorithms and Implementations. Kluwer Academic Publishers, Boston, MA, 1994.MATH
[204]
Zurück zum Zitat L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2), 2007. 15 pages. Available at http://www.mpfr.org/.CrossRef L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2), 2007. 15 pages. Available at http://​www.​mpfr.​org/​.CrossRef
[209]
Zurück zum Zitat M. Fürer. Faster integer multiplication. In 39th Annual ACM Symposium on Theory of Computing (STOC), pages 57–66, June 2007. M. Fürer. Faster integer multiplication. In 39th Annual ACM Symposium on Theory of Computing (STOC), pages 57–66, June 2007.
[210]
Zurück zum Zitat P. Gaudry, A. Kruppa, and P. Zimmermann. A GMP-based implementation of Schönhage-Strassen’s large integer multiplication algorithm. In International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 167–174, Waterloo, ON, Canada, 2007. P. Gaudry, A. Kruppa, and P. Zimmermann. A GMP-based implementation of Schönhage-Strassen’s large integer multiplication algorithm. In International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 167–174, Waterloo, ON, Canada, 2007.
[224]
[234]
Zurück zum Zitat G. Hanrot and P. Zimmermann. A long note on Mulders’ short product. Journal of Symbolic Computation, 37(3):391–401, 2004.MathSciNetCrossRef G. Hanrot and P. Zimmermann. A long note on Mulders’ short product. Journal of Symbolic Computation, 37(3):391–401, 2004.MathSciNetCrossRef
[247]
Zurück zum Zitat D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. Journal of Complexity, 36:1–30, 2016.MathSciNetCrossRef D. Harvey, J. van der Hoeven, and G. Lecerf. Even faster integer multiplication. Journal of Complexity, 36:1–30, 2016.MathSciNetCrossRef
[254]
Zurück zum Zitat Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision floating-point arithmetic. In 15th IEEE Symposium on Computer Arithmetic (ARITH-15), pages 155–162, June 2001. Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision floating-point arithmetic. In 15th IEEE Symposium on Computer Arithmetic (ARITH-15), pages 155–162, June 2001.
[304]
Zurück zum Zitat F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra, 47(4):166–169, 2013. F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in Computer Algebra, 47(4):166–169, 2013.
[308]
Zurück zum Zitat M. Joldeş, J.-M. Muller, and V. Popescu. Tight and rigourous error bounds for basic building blocks of double-word arithmetic. ACM Transactions on Mathematical Software, 44(2), 2017.MathSciNetCrossRef M. Joldeş, J.-M. Muller, and V. Popescu. Tight and rigourous error bounds for basic building blocks of double-word arithmetic. ACM Transactions on Mathematical Software, 44(2), 2017.MathSciNetCrossRef
[309]
Zurück zum Zitat M. Joldeş, J.-M. Muller, V. Popescu, and W. Tucker. CAMPARY: Cuda multiple precision arithmetic library and applications. In 5th International Congress on Mathematical Software (ICMS), July 2016. M. Joldeş, J.-M. Muller, V. Popescu, and W. Tucker. CAMPARY: Cuda multiple precision arithmetic library and applications. In 5th International Congress on Mathematical Software (ICMS), July 2016.
[310]
Zurück zum Zitat M. Joldeş, O. Marty, J.-M. Muller, and V. Popescu. Arithmetic algorithms for extended precision using floating-point expansions. IEEE Transactions on Computers, 65(4):1197–1210, 2016.MathSciNetCrossRef M. Joldeş, O. Marty, J.-M. Muller, and V. Popescu. Arithmetic algorithms for extended precision using floating-point expansions. IEEE Transactions on Computers, 65(4):1197–1210, 2016.MathSciNetCrossRef
[328]
Zurück zum Zitat A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962. Translation in Physics-Doklady 7, 595–596, 1963. A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962. Translation in Physics-Doklady 7, 595–596, 1963.
[346]
Zurück zum Zitat P. Kornerup, C. Lauter, V. Lefèvre, N. Louvet, and J.-M. Muller. Computing correctly rounded integer powers in floating-point arithmetic. ACM Transactions on Mathematical Software, 37(1):4:1–4:23, 2010.MathSciNetCrossRef P. Kornerup, C. Lauter, V. Lefèvre, N. Louvet, and J.-M. Muller. Computing correctly rounded integer powers in floating-point arithmetic. ACM Transactions on Mathematical Software, 37(1):4:1–4:23, 2010.MathSciNetCrossRef
[351]
Zurück zum Zitat W. Krandick and J. R. Johnson. Efficient multiprecision floating point multiplication with optimal directional rounding. In 11th IEEE Symposium on Computer Arithmetic (ARITH-11), pages 228–233, June 1993. W. Krandick and J. R. Johnson. Efficient multiprecision floating point multiplication with optimal directional rounding. In 11th IEEE Symposium on Computer Arithmetic (ARITH-11), pages 228–233, June 1993.
[370]
Zurück zum Zitat C. Q. Lauter. Basic building blocks for a triple-double intermediate format. Technical Report 2005-38, LIP, École Normale Supérieure de Lyon, September 2005. C. Q. Lauter. Basic building blocks for a triple-double intermediate format. Technical Report 2005-38, LIP, École Normale Supérieure de Lyon, September 2005.
[379]
Zurück zum Zitat V. Lefèvre. Correctly rounded arbitrary-precision floating-point summation. IEEE Transactions on Computers, 66(12):2111–2124, 2017.MathSciNetCrossRef V. Lefèvre. Correctly rounded arbitrary-precision floating-point summation. IEEE Transactions on Computers, 66(12):2111–2124, 2017.MathSciNetCrossRef
[381]
Zurück zum Zitat V. Lefèvre and P. Zimmermann. Optimized binary64 and binary128 arithmetic with GNU MPFR. In 24th IEEE Symposium on Computer Arithmetic (ARITH-24), July 2017. V. Lefèvre and P. Zimmermann. Optimized binary64 and binary128 arithmetic with GNU MPFR. In 24th IEEE Symposium on Computer Arithmetic (ARITH-24), July 2017.
[384]
[385]
Zurück zum Zitat X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation and testing of extended and mixed precision BLAS. ACM Transactions on Mathematical Software, 28(2):152–205, 2002.MathSciNetCrossRef X. Li, J. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A. Kapur, M. Martin, T. Tung, and D. J. Yoo. Design, implementation and testing of extended and mixed precision BLAS. ACM Transactions on Mathematical Software, 28(2):152–205, 2002.MathSciNetCrossRef
[387]
Zurück zum Zitat C. Lichtenau, S. Carlough, and S. M. Mueller. Quad precision floating point on the IBM z13TM. 23rd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 87–94, 2016. C. Lichtenau, S. Carlough, and S. M. Mueller. Quad precision floating point on the IBM z13TM. 23rd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 87–94, 2016.
[435]
Zurück zum Zitat T. Mulders. On short multiplications and divisions. Applicable Algebra in Engineering, Communication and Computing, 11(1):69–88, 2000.MathSciNetCrossRef T. Mulders. On short multiplications and divisions. Applicable Algebra in Engineering, Communication and Computing, 11(1):69–88, 2000.MathSciNetCrossRef
[443]
Zurück zum Zitat J.-M. Muller, V. Popescu, and P. T. P. Tang. A new multiplication algorithm for extended precision using floating-point expansions. In 23nd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 39–46, July 2016. J.-M. Muller, V. Popescu, and P. T. P. Tang. A new multiplication algorithm for extended precision using floating-point expansions. In 23nd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 39–46, July 2016.
[493]
Zurück zum Zitat S. Pion. De la Géométrie Algorithmique au Calcul Géométrique. Ph.D. thesis, Université de Nice Sophia-Antipolis, France, November 1999. In French. S. Pion. De la Géométrie Algorithmique au Calcul Géométrique. Ph.D. thesis, Université de Nice Sophia-Antipolis, France, November 1999. In French.
[495]
Zurück zum Zitat D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In 10th IEEE Symposium on Computer Arithmetic (ARITH-10), pages 132–143, June 1991. D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In 10th IEEE Symposium on Computer Arithmetic (ARITH-10), pages 132–143, June 1991.
[496]
Zurück zum Zitat D. M. Priest. On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost of Accurate Computations. Ph.D. thesis, University of California at Berkeley, 1992. D. M. Priest. On Properties of Floating-Point Arithmetics: Numerical Stability and the Cost of Accurate Computations. Ph.D. thesis, University of California at Berkeley, 1992.
[521]
Zurück zum Zitat S. M. Rump. Ultimately fast accurate summation. SIAM Journal on Scientific Computing, 31(5):3466–3502, 2009.MathSciNetCrossRef S. M. Rump. Ultimately fast accurate summation. SIAM Journal on Scientific Computing, 31(5):3466–3502, 2009.MathSciNetCrossRef
[531]
Zurück zum Zitat S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM Journal on Scientific Computing, 31(1):189–224, 2008.MathSciNetCrossRef S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful rounding. SIAM Journal on Scientific Computing, 31(1):189–224, 2008.MathSciNetCrossRef
[537]
Zurück zum Zitat E. Salamin. Computation of π using arithmetic-geometric mean. Mathematics of Computation, 30:565–570, 1976.MathSciNetMATH E. Salamin. Computation of π using arithmetic-geometric mean. Mathematics of Computation, 30:565–570, 1976.MathSciNetMATH
[545]
Zurück zum Zitat A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139–144, 1971. In German.CrossRef A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:139–144, 1971. In German.CrossRef
[546]
Zurück zum Zitat A. Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast algorithms: a Multitape Turing Machine Implementation. Bibliographisches Institut, Mannheim, 1994. A. Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast algorithms: a Multitape Turing Machine Implementation. Bibliographisches Institut, Mannheim, 1994.
[547]
Zurück zum Zitat A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971. In German.MathSciNetCrossRef A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292, 1971. In German.MathSciNetCrossRef
[555]
Zurück zum Zitat J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Computational Geometry, 18:305–363, 1997.MathSciNetCrossRef J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete Computational Geometry, 18:305–363, 1997.MathSciNetCrossRef
[603]
Zurück zum Zitat A. L. Toom. The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.MATH A. L. Toom. The complexity of a scheme of functional elements realizing the multiplication of integers. Soviet Mathematics Doklady, 3:714–716, 1963.MATH
[648]
Zurück zum Zitat D. Zuras. More on squaring and multiplying large integers. IEEE Transactions on Computers, 43(8):899–908, 1994.MathSciNetCrossRef D. Zuras. More on squaring and multiplying large integers. IEEE Transactions on Computers, 43(8):899–908, 1994.MathSciNetCrossRef
Metadaten
Titel
Extending the Precision
verfasst von
Jean-Michel Muller
Nicolas Brunie
Florent de Dinechin
Claude-Pierre Jeannerod
Mioara Joldes
Vincent Lefèvre
Guillaume Melquiond
Nathalie Revol
Serge Torres
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76526-6_14