Skip to main content
Erschienen in: Quantum Information Processing 4/2019

01.04.2019

Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies

verfasst von: Paul B. Slater

Erschienen in: Quantum Information Processing | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We first seek the rebit–retrit counterpart to the (formally proven by Lovas and Andai) two-rebit Hilbert–Schmidt separability probability of \(\frac{29}{64} =\frac{29}{2^6} \approx 0.453125\) and the qubit–qutrit analogue of the (strongly supported) value of \(\frac{8}{33} = \frac{2^3}{3 \cdot 11} \approx 0.242424\). We advance the possibilities of a rebit–retrit value of \(\frac{860}{6561} =\frac{2^2 \cdot 5 \cdot 43}{3^8} \approx 0.131078\) and a qubit–qutrit one of \(\frac{27}{1000} = (\frac{3}{10})^3 =\frac{3^3}{2^3 \cdot 5^3} = 0.027\). These four values for \(2 \times m\) systems (\(m=2,3\)) suggest certain numerator/denominator sequences involving powers of m, which we further investigate for \(m>3\). Additionally, we find that the Hilbert–Schmidt separability/PPT-probabilities for the two-rebit, rebit–retrit and two-retrit X-states all equal \(\frac{16}{3 \pi ^2} \approx 0.54038\), as well as more generally, that the probabilities based on induced measures are equal across these three sets. Then, we extend the master Lovas–Andai formula to induced measures. For instance, the two-qubit function (\(k=0\)) is \(\tilde{\chi }_{2,0}(\varepsilon )=\frac{1}{3} \varepsilon ^2 (4 -\varepsilon ^2)\), yielding \(\frac{8}{33}\), while its \(k=1\) induced measure counterpart is \(\tilde{\chi }_{2,1}(\varepsilon )=\frac{1}{4} \varepsilon ^2 \left( 3-\varepsilon ^2\right) ^2\), yielding \(\frac{61}{143} =\frac{61}{11 \cdot 13} \approx 0.426573\), where \(\varepsilon \) is a singular-value ratio. Interpolations between Hilbert–Schmidt and operator monotone (Bures, \(\sqrt{x}\)) measures are also studied. Using a recently-developed golden-ratio-related (quasirandom sequence) approach, current (significant digits) estimates of the two-rebit and two-qubit Bures separability probabilities are 0.15709 and 0.07331, respectively–with an additional indicator that the latter probability may be \(\frac{25}{341} =\frac{5^2}{11 \cdot 31} \approx 0.07331378\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4\times 4\) bipartite systems. J. Phys. A Math. Theor 50, 295303 (2017)CrossRef Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4\times 4\) bipartite systems. J. Phys. A Math. Theor 50, 295303 (2017)CrossRef
2.
Zurück zum Zitat Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRef Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRef
3.
Zurück zum Zitat Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRef Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRef
4.
Zurück zum Zitat Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018a)ADSCrossRef Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018a)ADSCrossRef
5.
7.
Zurück zum Zitat Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRef Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRef
8.
Zurück zum Zitat Slater, P.B.: A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities. J. Phys. A Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRef Slater, P.B.: A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities. J. Phys. A Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRef
9.
Zurück zum Zitat Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times \) 2 separability probabilities. J. Phys. A Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRef Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times \) 2 separability probabilities. J. Phys. A Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRef Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRef
11.
Zurück zum Zitat Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press on Demand, Oxford (1995)MATH Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press on Demand, Oxford (1995)MATH
12.
Zurück zum Zitat Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRef Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRef
15.
Zurück zum Zitat Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRef Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRef
17.
Zurück zum Zitat Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRef Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRef
18.
Zurück zum Zitat Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)MATH Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)MATH
19.
Zurück zum Zitat Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRef Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRef
21.
Zurück zum Zitat Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRef Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRef
22.
Zurück zum Zitat Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRef Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRef
23.
Zurück zum Zitat Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRef Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRef
25.
Zurück zum Zitat Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34, 7111 (2001)ADSMathSciNetCrossRef Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34, 7111 (2001)ADSMathSciNetCrossRef
26.
27.
Zurück zum Zitat Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRef Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRef
28.
Zurück zum Zitat Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit states. Adv. Math. Phys. 2015, 621353 (2015)MathSciNetCrossRef Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit states. Adv. Math. Phys. 2015, 621353 (2015)MathSciNetCrossRef
29.
Zurück zum Zitat Slater, P.B.: Formulas for generalized two-qubit separability probabilities. Adv. Math. Phys. 2018, 9365213 (2018b)MathSciNetCrossRef Slater, P.B.: Formulas for generalized two-qubit separability probabilities. Adv. Math. Phys. 2018, 9365213 (2018b)MathSciNetCrossRef
30.
Zurück zum Zitat Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016a)ADSMathSciNetCrossRef Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016a)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Gerdt, V., Mladenov, D., Palii, Y., Khvedelidze, A.: SU (6) Casimir invariants and SU (2)–SU (3) scalars for a mixed qubit–qutrit state. J. Math. Sci. 179, 690 (2011)MathSciNetCrossRef Gerdt, V., Mladenov, D., Palii, Y., Khvedelidze, A.: SU (6) Casimir invariants and SU (2)–SU (3) scalars for a mixed qubit–qutrit state. J. Math. Sci. 179, 690 (2011)MathSciNetCrossRef
32.
Zurück zum Zitat Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)ADSMathSciNetCrossRef Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRef Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRef
34.
Zurück zum Zitat Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52, 062201 (2011)ADSMathSciNetCrossRef Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52, 062201 (2011)ADSMathSciNetCrossRef
35.
Zurück zum Zitat Augusiak, R., Demianowicz, M., Horodecki, P.: Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77, 030301 (2008)ADSCrossRef Augusiak, R., Demianowicz, M., Horodecki, P.: Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77, 030301 (2008)ADSCrossRef
36.
Zurück zum Zitat Johnston, N.: Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Phys. Rev. A 87, 064302 (2013a)ADSCrossRef Johnston, N.: Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Phys. Rev. A 87, 064302 (2013a)ADSCrossRef
37.
Zurück zum Zitat Mendonça, P.E., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit–qutrit systems. Phys. Rev. A 95, 022324 (2017)ADSCrossRef Mendonça, P.E., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit–qutrit systems. Phys. Rev. A 95, 022324 (2017)ADSCrossRef
38.
Zurück zum Zitat Provost, S.B.: Moment-based density approximants. Math. J. 9, 727 (2005) Provost, S.B.: Moment-based density approximants. Math. J. 9, 727 (2005)
40.
Zurück zum Zitat Qian, C., Li, J.-L., Qiao, C.-F.: State-independent uncertainty relations and entanglement detection. Quantum Inf. Process. 17, 84 (2018)ADSMathSciNetCrossRef Qian, C., Li, J.-L., Qiao, C.-F.: State-independent uncertainty relations and entanglement detection. Quantum Inf. Process. 17, 84 (2018)ADSMathSciNetCrossRef
42.
Zurück zum Zitat Johnston, N.: Separability from spectrum for qubit-qudit states. Phys. Rev. A 88, 062330 (2013b)ADSCrossRef Johnston, N.: Separability from spectrum for qubit-qudit states. Phys. Rev. A 88, 062330 (2013b)ADSCrossRef
43.
Zurück zum Zitat Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429, 901 (2008)MathSciNetCrossRef Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429, 901 (2008)MathSciNetCrossRef
44.
Zurück zum Zitat Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)ADSCrossRef Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)ADSCrossRef
45.
Zurück zum Zitat Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRef Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRef
46.
Zurück zum Zitat Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B Condens Matter Complex Syst. 17, 471 (2000)CrossRef Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B Condens Matter Complex Syst. 17, 471 (2000)CrossRef
47.
Zurück zum Zitat Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRef Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRef
48.
Zurück zum Zitat Penson, K.A., Życzkowski, K.: Product of ginibre matrices: Fuss–Catalan and raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRef Penson, K.A., Życzkowski, K.: Product of ginibre matrices: Fuss–Catalan and raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRef
49.
Zurück zum Zitat Borot, G., Nadal, C.: Purity distribution for generalized random Bures mixed states. J. Phys. A Math. Theor. 45, 075209 (2012)ADSMathSciNetCrossRef Borot, G., Nadal, C.: Purity distribution for generalized random Bures mixed states. J. Phys. A Math. Theor. 45, 075209 (2012)ADSMathSciNetCrossRef
50.
Zurück zum Zitat Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRef Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRef
52.
Zurück zum Zitat Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRef Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRef
53.
Zurück zum Zitat Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits computing separability probabilities for fixed rank states. In: EPJ Web of Conferences, EDP Sciences, vol. 173, p. 02010 (2018) Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits computing separability probabilities for fixed rank states. In: EPJ Web of Conferences, EDP Sciences, vol. 173, p. 02010 (2018)
54.
Zurück zum Zitat Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRef Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRef
55.
56.
Zurück zum Zitat Slater, P.B.: Quasirandom estimation of bures two-qubit and two-rebit separability probabilities (2019). arXiv preprint arXiv:1901.09889 Slater, P.B.: Quasirandom estimation of bures two-qubit and two-rebit separability probabilities (2019). arXiv preprint arXiv:​1901.​09889
57.
59.
Zurück zum Zitat Slater, P.B.: Two-qubit separability probabilities as joint functions of the Bloch radii of the qubit subsystems. Int. J. Quantum Inf. 14, 1650042 (2016b)MathSciNetCrossRef Slater, P.B.: Two-qubit separability probabilities as joint functions of the Bloch radii of the qubit subsystems. Int. J. Quantum Inf. 14, 1650042 (2016b)MathSciNetCrossRef
60.
Zurück zum Zitat Altafini, C.: Tensor of coherences parametrization of multiqubit density operators for entanglement characterization. Phys. Rev. A 69, 012311 (2004)ADSCrossRef Altafini, C.: Tensor of coherences parametrization of multiqubit density operators for entanglement characterization. Phys. Rev. A 69, 012311 (2004)ADSCrossRef
61.
Zurück zum Zitat Ruskai, M.B., Werner, E.M.: Bipartite states of low rank are almost surely entangled. J. Phys. A Math. Theor. 42, 095303 (2009)ADSMathSciNetCrossRef Ruskai, M.B., Werner, E.M.: Bipartite states of low rank are almost surely entangled. J. Phys. A Math. Theor. 42, 095303 (2009)ADSMathSciNetCrossRef
Metadaten
Titel
Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies
verfasst von
Paul B. Slater
Publikationsdatum
01.04.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 4/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2230-9

Weitere Artikel der Ausgabe 4/2019

Quantum Information Processing 4/2019 Zur Ausgabe

Neuer Inhalt