Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Original Article | Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014

Extracting the contribution of independent variables in neural network models: a new approach to handle instability

Zeitschrift:
Neural Computing and Applications > Ausgabe 3-4/2014
Autoren:
Juan de Oña, Concepción Garrido

Abstract

One of the main limitations of artificial neural networks (ANN) is their high inability to know in an explicit way the relations established between explanatory variables (input) and dependent variables (output). This is a major reason why they are usually called “black boxes.” In the last few years, several methods have been proposed to assess the relative importance of each explanatory variable. Nevertheless, it has not been possible to reach a consensus on which is the best-performing method. This is largely due to the different relative importance obtained for each variable depending on the method used. This importance also varies with the designed network architecture and/or with the initial random weights used to train the ANN. This paper proposes a procedure that seeks to minimize these problems and provides consistency in the results obtained from different methods. Essentially, the idea is to work with a set of neural networks instead of a single one. The proposed procedure is validated using a database collected from a customer satisfaction survey, which was conducted on the public transport system of Granada (Spain) in 2007. The results show that, when each method is applied independently, the variable’s importance rankings are similar and, in addition, coincide with the hierarchy established by researchers who have applied other techniques.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014 Zur Ausgabe

Premium Partner

    Bildnachweise