Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-8/2019

05.07.2019 | ORIGINAL ARTICLE

Extraction of weak fault using combined dual-tree wavelet and improved MCA for rolling bearings

verfasst von: Yanfei Lu, Rui Xie, Steven Y. Liang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The successful diagnosis of the faulty signal in rolling element bearings hinges on the accurate detection of the early fault present within the components of bearings. Because the fault signature is heavily covered by the system noise and resonance of the components, the early diagnosis of the fault frequency of bearings is not easy to execute. The kurtosis and root mean square values of the vibration signal are usually used as indicators for fault. However, these indicators could result in inaccurate diagnostic results because of the stochastic nature of the vibration signal of bearings. This paper presents a method using the dual-tree wavelet transform (DTWT) combined with an optimized morphological component analysis (MCA) to extract the weak fault in the early degradation stage of bearings. The DTWT decomposes the signal into multiple layers based on the fundamental frequencies of bearings. The MCA takes the decomposed signal and separates the signal into two components as output. Alternating parameter selection is implemented to improve the result of the MCA. The weak fault signature of the bearing is extracted from the separated components of the MCA. Simulated and experimental data are used to validate this method. The proposed optimization method is compared with an unscented Kalman filter parameter optimization process. The proposed diagnostic model demonstrates the superior capability of the early detection of the faulty signal within bearings in comparison with the traditionally used wavelet decomposition method and the unscented Kalman filter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liang SY, Li Y, Billington SA, Zhang C, Shiroishi J, Kurfess TR, Danyluk S (2014) Adaptive prognostics for rotary machineries. Proc Eng 86:852–857CrossRef Liang SY, Li Y, Billington SA, Zhang C, Shiroishi J, Kurfess TR, Danyluk S (2014) Adaptive prognostics for rotary machineries. Proc Eng 86:852–857CrossRef
2.
Zurück zum Zitat T. R. Kurfess, S. Billington, and S. Y. Liang, 2006"Advanced diagnostic and prognostic techniques for rolling element bearings," in Condition monitoring and control for intelligent manufacturing: Springer, pp. 137–165 T. R. Kurfess, S. Billington, and S. Y. Liang, 2006"Advanced diagnostic and prognostic techniques for rolling element bearings," in Condition monitoring and control for intelligent manufacturing: Springer, pp. 137–165
3.
Zurück zum Zitat Randall RB, Antoni J (2011) Rolling element bearing diagnostics—a tutorial. Mech Syst Signal Process 25(2):485–520CrossRef Randall RB, Antoni J (2011) Rolling element bearing diagnostics—a tutorial. Mech Syst Signal Process 25(2):485–520CrossRef
4.
Zurück zum Zitat Y. Li,1999 "Dynamic prognostics of rolling element bearing condition," Georgia Institute of Technology, Y. Li,1999 "Dynamic prognostics of rolling element bearing condition," Georgia Institute of Technology,
5.
Zurück zum Zitat Randall RB (2011) Vibration-based condition monitoring: industrial, aerospace and automotive applications. John Wiley & Sons Randall RB (2011) Vibration-based condition monitoring: industrial, aerospace and automotive applications. John Wiley & Sons
6.
Zurück zum Zitat Rai A, Upadhyay S (2016) A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol Int 96:289–306CrossRef Rai A, Upadhyay S (2016) A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings. Tribol Int 96:289–306CrossRef
7.
Zurück zum Zitat Rai V, Mohanty A (2007) Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform. Mech Syst Signal Process 21(6):2607–2615CrossRef Rai V, Mohanty A (2007) Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform. Mech Syst Signal Process 21(6):2607–2615CrossRef
8.
Zurück zum Zitat Peng Z, Peter WT, Chu F (2005) A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech Syst Signal Process 19(5):974–988CrossRef Peng Z, Peter WT, Chu F (2005) A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech Syst Signal Process 19(5):974–988CrossRef
9.
Zurück zum Zitat Ho D, Randall R (2000) Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mech Syst Signal Process 14(5):763–788CrossRef Ho D, Randall R (2000) Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mech Syst Signal Process 14(5):763–788CrossRef
10.
Zurück zum Zitat Kim Y-H, Lim BD, Cheoung WS (1991) Fault detection in a ball bearing system using a moving window. Mech Syst Signal Process 5(6):461–473CrossRef Kim Y-H, Lim BD, Cheoung WS (1991) Fault detection in a ball bearing system using a moving window. Mech Syst Signal Process 5(6):461–473CrossRef
11.
Zurück zum Zitat Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRef Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRef
12.
Zurück zum Zitat Qiu H, Lee J, Lin J, Yu G (2006) Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J Sound Vib 289(4–5):1066–1090CrossRef Qiu H, Lee J, Lin J, Yu G (2006) Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J Sound Vib 289(4–5):1066–1090CrossRef
13.
Zurück zum Zitat Rubini R, Meneghetti U (2001) Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech Syst Signal Process 15(2):287–302CrossRef Rubini R, Meneghetti U (2001) Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech Syst Signal Process 15(2):287–302CrossRef
14.
Zurück zum Zitat Prabhakar S, Mohanty A, Sekhar A (2002) Application of discrete wavelet transform for detection of ball bearing race faults. Tribol Int 35(12):793–800CrossRef Prabhakar S, Mohanty A, Sekhar A (2002) Application of discrete wavelet transform for detection of ball bearing race faults. Tribol Int 35(12):793–800CrossRef
15.
Zurück zum Zitat Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151CrossRef Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151CrossRef
16.
Zurück zum Zitat Peter WT, Yang W-x, Tam H (2004) Machine fault diagnosis through an effective exact wavelet analysis. J Sound Vib 277(4–5):1005–1024 Peter WT, Yang W-x, Tam H (2004) Machine fault diagnosis through an effective exact wavelet analysis. J Sound Vib 277(4–5):1005–1024
17.
Zurück zum Zitat Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582MathSciNetCrossRef Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582MathSciNetCrossRef
18.
Zurück zum Zitat Chaibi S, Lajnef T, Sakka Z, Samet M, Kachouri A (2014) A reliable approach to distinguish between transient with and without HFOs using TQWT and MCA. J Neurosci Methods 232:36–46CrossRef Chaibi S, Lajnef T, Sakka Z, Samet M, Kachouri A (2014) A reliable approach to distinguish between transient with and without HFOs using TQWT and MCA. J Neurosci Methods 232:36–46CrossRef
19.
Zurück zum Zitat Lajnef T et al (2015) Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis. Front Hum Neurosci 9:414CrossRef Lajnef T et al (2015) Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis. Front Hum Neurosci 9:414CrossRef
20.
Zurück zum Zitat Imani E, Javidi M, Pourreza H-R (2015) Improvement of retinal blood vessel detection using morphological component analysis. Comput Methods Prog Biomed 118(3):263–279CrossRef Imani E, Javidi M, Pourreza H-R (2015) Improvement of retinal blood vessel detection using morphological component analysis. Comput Methods Prog Biomed 118(3):263–279CrossRef
21.
Zurück zum Zitat I. T. Jolliffe, 1986"Principal component analysis and factor analysis," in Principal component analysis: Springer, , pp. 115–128 I. T. Jolliffe, 1986"Principal component analysis and factor analysis," in Principal component analysis: Springer, , pp. 115–128
22.
Zurück zum Zitat Li Y, Billington S, Zhang C, Kurfess T, Danyluk S, Liang S (1999) Adaptive prognostics for rolling element bearing condition. Mech Syst Signal Process 13(1):103–113CrossRef Li Y, Billington S, Zhang C, Kurfess T, Danyluk S, Liang S (1999) Adaptive prognostics for rolling element bearing condition. Mech Syst Signal Process 13(1):103–113CrossRef
23.
Zurück zum Zitat Khanam S, Tandon N, Dutt J (2014) Fault size estimation in the outer race of ball bearing using discrete wavelet transform of the vibration signal. Proc Technol 14:12–19CrossRef Khanam S, Tandon N, Dutt J (2014) Fault size estimation in the outer race of ball bearing using discrete wavelet transform of the vibration signal. Proc Technol 14:12–19CrossRef
24.
Zurück zum Zitat Rao VV, Ratnam C (2015) Estimation of defect severity in rolling element bearings using vibration signals with artificial neural network. Jordan J Mech Ind Eng 9(2) Rao VV, Ratnam C (2015) Estimation of defect severity in rolling element bearings using vibration signals with artificial neural network. Jordan J Mech Ind Eng 9(2)
25.
Zurück zum Zitat Mallat S (1999) A wavelet tour of signal processing. Academic press Mallat S (1999) A wavelet tour of signal processing. Academic press
26.
Zurück zum Zitat H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, 2000"Hidden Markov tree modeling of complex wavelet transforms," in Acoustics, speech, and signal processing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on, , vol. 1, pp. 133–136: IEEE H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, 2000"Hidden Markov tree modeling of complex wavelet transforms," in Acoustics, speech, and signal processing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on, , vol. 1, pp. 133–136: IEEE
27.
Zurück zum Zitat Dragotti PL, Vetterli M (2003) Wavelet footprints: theory, algorithms, and applications. IEEE Trans Signal Process 51(5):1306–1323MathSciNetCrossRef Dragotti PL, Vetterli M (2003) Wavelet footprints: theory, algorithms, and applications. IEEE Trans Signal Process 51(5):1306–1323MathSciNetCrossRef
28.
Zurück zum Zitat Abdi H, Williams LJ (2010) Principal component analysis, Wiley interdisciplinary reviews. Comput Stat 2(4):433–459CrossRef Abdi H, Williams LJ (2010) Principal component analysis, Wiley interdisciplinary reviews. Comput Stat 2(4):433–459CrossRef
29.
Zurück zum Zitat J.-L. Starck, D. Donoho, and M. Elad, 2004 "Redundant multiscale transforms and their application for morphological component separation," CM-P000520612004, J.-L. Starck, D. Donoho, and M. Elad, 2004 "Redundant multiscale transforms and their application for morphological component separation," CM-P000520612004,
30.
31.
Zurück zum Zitat Sohaib M, Kim C-H, Kim J-M (2017) A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors 17(12):2876CrossRef Sohaib M, Kim C-H, Kim J-M (2017) A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors 17(12):2876CrossRef
32.
Zurück zum Zitat He W, Zi Y, Chen B, Wang S, He Z (2013) Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis. Science China Technol Sci 56(8):1956–1965CrossRef He W, Zi Y, Chen B, Wang S, He Z (2013) Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis. Science China Technol Sci 56(8):1956–1965CrossRef
33.
Zurück zum Zitat W. He and Y. Zi, 2014"Sparsity-assisted signal representation for rotating machinery fault diagnosis using the tunable Q-factor wavelet transform with overlapping group shrinkage," in Wavelet analysis and pattern recognition (ICWAPR), 2014 International Conference on, , pp. 18–23: IEEE W. He and Y. Zi, 2014"Sparsity-assisted signal representation for rotating machinery fault diagnosis using the tunable Q-factor wavelet transform with overlapping group shrinkage," in Wavelet analysis and pattern recognition (ICWAPR), 2014 International Conference on, , pp. 18–23: IEEE
34.
Zurück zum Zitat I. W. Selesnick, 2011"Sparse signal representations using the tunable Q-factor wavelet transform," in Wavelets and Sparsity XIV, , vol. 8138, p. 81381U: International Society for Optics and Photonics I. W. Selesnick, 2011"Sparse signal representations using the tunable Q-factor wavelet transform," in Wavelets and Sparsity XIV, , vol. 8138, p. 81381U: International Society for Optics and Photonics
35.
36.
Zurück zum Zitat Selesnick IW (2011) Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process 91(12):2793–2809CrossRef Selesnick IW (2011) Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process 91(12):2793–2809CrossRef
37.
Zurück zum Zitat Q. Li and S. Y. Liang, 2017"Incipient multi-fault diagnosis of rolling bearing using improved TQWT and sparse representation approach," presented at the 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), Singapore, Singapore, Q. Li and S. Y. Liang, 2017"Incipient multi-fault diagnosis of rolling bearing using improved TQWT and sparse representation approach," presented at the 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), Singapore, Singapore,
Metadaten
Titel
Extraction of weak fault using combined dual-tree wavelet and improved MCA for rolling bearings
verfasst von
Yanfei Lu
Rui Xie
Steven Y. Liang
Publikationsdatum
05.07.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04065-7

Weitere Artikel der Ausgabe 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.