Skip to main content

03.12.2024

Extremal Values on the Kirchhoff Index of the Line Graph of Unicyclic Networks

verfasst von: Muhammad Shoaib Sardar, Shou-Jun Xu

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let G be a simple connected graph with vertex set V(G) and edge set E(G). Suppose N represents a network derived from G by substituting a 1-ohm resistor for each edge of G. In that case, the resistance between \(u, v \in V(G)\) is analogous to the resistance between two equivalent nodes in network N. The Kirchhoff index of G is the summation of the resistance distances between all pairs of vertices in G. The line graph \(L_G\) of G is a graph whose vertices correspond to the edges of G, and any two vertices of \(L_G\) are adjacent if and only if the corresponding edges of G are incident with the same vertex of G. A unicyclic graph is a connected graph containing exactly one cycle. In this paper, we will identify the extremal values and unicyclic graphs for the Kirchhoff index of the line graph of unicyclic graphs by utilizing techniques derived from electrical networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat W. Barrett, Emily. J. Evans, Amanda E. Francis, Resistance distance in straight linear 2-trees. Discrete Appl. Math. 258, 13-34 (2019) W. Barrett, Emily. J. Evans, Amanda E. Francis, Resistance distance in straight linear 2-trees. Discrete Appl. Math. 258, 13-34 (2019)
2.
Zurück zum Zitat S.H. Bertz, The bond graph, J. Chem. Soc. Chem. Commun. 818-820 (1981) S.H. Bertz, The bond graph, J. Chem. Soc. Chem. Commun. 818-820 (1981)
3.
Zurück zum Zitat S.H. Bertz, A mathematical model of molecular complexity, in Chemical Applications of Topology and Graph Theory, (R B. King. editor), Elsevier, Amsterdam (1993) S.H. Bertz, A mathematical model of molecular complexity, in Chemical Applications of Topology and Graph Theory, (R B. King. editor), Elsevier, Amsterdam (1993)
5.
Zurück zum Zitat B. Bollob\(\grave{a}\)s, Modern Graph Theory, New York, NY, USA: Springer-Verlag, 1998 B. Bollob\(\grave{a}\)s, Modern Graph Theory, New York, NY, USA: Springer-Verlag, 1998
6.
Zurück zum Zitat D. Bonchev, A.T. Balaban, X. Liu, D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1), 1-20 (1994) D. Bonchev, A.T. Balaban, X. Liu, D.J. Klein, Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1), 1-20 (1994)
7.
Zurück zum Zitat H.Y. Chen, F.J. Zhang, Resistance distance and normalized Laplacian spectrum. Discrete Appl. Math. 155, 654–661 (2007)MathSciNetCrossRef H.Y. Chen, F.J. Zhang, Resistance distance and normalized Laplacian spectrum. Discrete Appl. Math. 155, 654–661 (2007)MathSciNetCrossRef
8.
Zurück zum Zitat P. Doyle, J. Snell, Random Walks and Electric Networks (American Mathematical Society, Providence, Rhode Island, 1984)CrossRef P. Doyle, J. Snell, Random Walks and Electric Networks (American Mathematical Society, Providence, Rhode Island, 1984)CrossRef
9.
11.
Zurück zum Zitat I. Gutman, J.H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997) I. Gutman, J.H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997)
12.
Zurück zum Zitat I. Gutman, Y.N. Yeh, S.L. Lee, Y.L. Luo, Some recent results in the theory of the Wiener number, lndian. J. Chem. 32A, 651–661 (1993) I. Gutman, Y.N. Yeh, S.L. Lee, Y.L. Luo, Some recent results in the theory of the Wiener number, lndian. J. Chem. 32A, 651–661 (1993)
13.
Zurück zum Zitat F. Harary, Graph theory (New Age International, New Delhi, 2001) F. Harary, Graph theory (New Age International, New Delhi, 2001)
14.
Zurück zum Zitat F. Harary, Line Graphs, Graph Theory. Massachusetts: Addison-Wesley, 71-83 (1972) F. Harary, Line Graphs, Graph Theory. Massachusetts: Addison-Wesley, 71-83 (1972)
16.
Zurück zum Zitat G. Huang, W. He, Y. Tan, Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge \(k\)-partiteness. Appl. Math. Comput. 341, 348–357 (2019)MathSciNet G. Huang, W. He, Y. Tan, Theoretical and computational methods to minimize Kirchhoff index of graphs with a given edge \(k\)-partiteness. Appl. Math. Comput. 341, 348–357 (2019)MathSciNet
17.
Zurück zum Zitat A.E. Kennelly, Equivalence of triangles and stars in conducting networks. Electr. World Eng. 34, 413–414 (1899) A.E. Kennelly, Equivalence of triangles and stars in conducting networks. Electr. World Eng. 34, 413–414 (1899)
19.
Zurück zum Zitat D.J. Klein, Resistance-distance sum rules. Croat. Chem. Acta 75, 633–649 (2002) D.J. Klein, Resistance-distance sum rules. Croat. Chem. Acta 75, 633–649 (2002)
20.
Zurück zum Zitat D.J. Klein, Graph geometry, graph metrics and Wiener. MATCH COmmun. Math. Comput. Chem. 25, 7–27 (1997)MathSciNet D.J. Klein, Graph geometry, graph metrics and Wiener. MATCH COmmun. Math. Comput. Chem. 25, 7–27 (1997)MathSciNet
22.
Zurück zum Zitat Q. Liu, The resistance distance and Kirchhoff index on quadrilateral graph and pentagonal graph. IEEE Access 7, 36617–36622 (2019)CrossRef Q. Liu, The resistance distance and Kirchhoff index on quadrilateral graph and pentagonal graph. IEEE Access 7, 36617–36622 (2019)CrossRef
23.
Zurück zum Zitat J.B. Liu, X.F. Pan, Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput. 291, 84–88 (2016)MathSciNet J.B. Liu, X.F. Pan, Minimizing Kirchhoff index among graphs with a given vertex bipartiteness. Appl. Math. Comput. 291, 84–88 (2016)MathSciNet
24.
Zurück zum Zitat J.B. Liu, X.F. Pan, L. Yu, D. Li, Complete characterization of bicyclic graphs with minimal Kirchhoff index. Discret. Appl. Math. 200, 95–107 (2016)MathSciNetCrossRef J.B. Liu, X.F. Pan, L. Yu, D. Li, Complete characterization of bicyclic graphs with minimal Kirchhoff index. Discret. Appl. Math. 200, 95–107 (2016)MathSciNetCrossRef
25.
Zurück zum Zitat Q. Liu, J.B. Liu, J. Cao, Further results on resistance distance and Kirchhoff index in electric networks. Discret. Dyn. Nat. Soc. 1, 4682527 (2016)MathSciNet Q. Liu, J.B. Liu, J. Cao, Further results on resistance distance and Kirchhoff index in electric networks. Discret. Dyn. Nat. Soc. 1, 4682527 (2016)MathSciNet
26.
Zurück zum Zitat I. Lukovits, S. Nikolic, N. Trinajstic, Resistance distance in regular graphs. Int. J. Quantum Chem. 71(3), 217–225 (1999)CrossRef I. Lukovits, S. Nikolic, N. Trinajstic, Resistance distance in regular graphs. Int. J. Quantum Chem. 71(3), 217–225 (1999)CrossRef
27.
Zurück zum Zitat S. Li, T. Tian, Resistance between two nodes of a ring clique network. Cicuits Syst. Signal Process. 41, 1287–1298 (2022)CrossRef S. Li, T. Tian, Resistance between two nodes of a ring clique network. Cicuits Syst. Signal Process. 41, 1287–1298 (2022)CrossRef
28.
Zurück zum Zitat B.H. McRae, B.G. Dickson, T.H. Keitt, V.B. Shah, Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724 (2008)CrossRef B.H. McRae, B.G. Dickson, T.H. Keitt, V.B. Shah, Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712–2724 (2008)CrossRef
29.
Zurück zum Zitat M.F. Nadeem, F. Ishfaq, A. Shabbir, On resistance distance and Kirchhoff index of cacti networks. J. Stat. Phys. 191, 83 (2024)MathSciNetCrossRef M.F. Nadeem, F. Ishfaq, A. Shabbir, On resistance distance and Kirchhoff index of cacti networks. J. Stat. Phys. 191, 83 (2024)MathSciNetCrossRef
30.
Zurück zum Zitat J.L. Palacios, Resistance distance in graphs and random walks. Int. J. Quantum Chem. 81, 29–33 (2001)CrossRef J.L. Palacios, Resistance distance in graphs and random walks. Int. J. Quantum Chem. 81, 29–33 (2001)CrossRef
31.
Zurück zum Zitat W. Sajjad, X. F. Pan et al. Computation of resistance distance with Kirchhoff index of body centered cubic structure. J. Math. Chem., 1-20 (2024) W. Sajjad, X. F. Pan et al. Computation of resistance distance with Kirchhoff index of body centered cubic structure. J. Math. Chem., 1-20 (2024)
32.
Zurück zum Zitat W. Sajjad, M.S. Sardar, X.F. Pan, Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron. Appl. Math. Comput. 461, 128313 (2024)MathSciNet W. Sajjad, M.S. Sardar, X.F. Pan, Computation of resistance distance and Kirchhoff index of chain of triangular bipyramid hexahedron. Appl. Math. Comput. 461, 128313 (2024)MathSciNet
33.
Zurück zum Zitat M.S. Sardar, H.-B. Hua, X.-F. Pan, H. Raza, On the resistance diameter of hypercubes. Physica A 540, 123076 (2020)MathSciNetCrossRef M.S. Sardar, H.-B. Hua, X.-F. Pan, H. Raza, On the resistance diameter of hypercubes. Physica A 540, 123076 (2020)MathSciNetCrossRef
34.
Zurück zum Zitat M. Sardar, J.B. Liu, I. Siddique, M. Jaradat, A novel and efficient method for computing the resistance distance. IEEE Access 9, 107104–107110 (2021)CrossRef M. Sardar, J.B. Liu, I. Siddique, M. Jaradat, A novel and efficient method for computing the resistance distance. IEEE Access 9, 107104–107110 (2021)CrossRef
35.
Zurück zum Zitat M.S. Sardar, X.F. Pan, S.A. Xu, Computation of resistance distance and Kirchhoff index of the two classes of silicate networks. Appl. Math. Comput. 381, 125283 (2020)MathSciNet M.S. Sardar, X.F. Pan, S.A. Xu, Computation of resistance distance and Kirchhoff index of the two classes of silicate networks. Appl. Math. Comput. 381, 125283 (2020)MathSciNet
36.
Zurück zum Zitat M.S. Sardar, X.F. Pan, S.J. Xu, Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs. Appl. Math. Comput. 473, 128670 (2024)MathSciNet M.S. Sardar, X.F. Pan, S.J. Xu, Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs. Appl. Math. Comput. 473, 128670 (2024)MathSciNet
37.
Zurück zum Zitat M.S. Sardar, S.J. Xu, X.F. Pan, Extremal values on the Kirchhoff index of the line graph of trees. Kuwait J. Sci. 52(1), 100327 (2025)MathSciNetCrossRef M.S. Sardar, S.J. Xu, X.F. Pan, Extremal values on the Kirchhoff index of the line graph of trees. Kuwait J. Sci. 52(1), 100327 (2025)MathSciNetCrossRef
39.
Zurück zum Zitat V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst. Signal Process 33, 97–113 (2014)MathSciNetCrossRef V. Stojanovic, V. Filipovic, Adaptive input design for identification of output error model with constrained output. Circuits Syst. Signal Process 33, 97–113 (2014)MathSciNetCrossRef
40.
Zurück zum Zitat V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic, Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40(13–14), 6676–6689 (2016)MathSciNetCrossRef V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic, Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise. Appl. Math. Model. 40(13–14), 6676–6689 (2016)MathSciNetCrossRef
41.
Zurück zum Zitat W. Sun, Y. Yang, A note on resistance distances of graphs. Front. Phy. 10, 896886 (2022)CrossRef W. Sun, Y. Yang, A note on resistance distances of graphs. Front. Phy. 10, 896886 (2022)CrossRef
42.
Zurück zum Zitat W. Sun, Y. Yang, Extremal pentagonal chains with respect to the Kirchhoff index. Appl. Math. Comput. 437, 127534 (2023)MathSciNet W. Sun, Y. Yang, Extremal pentagonal chains with respect to the Kirchhoff index. Appl. Math. Comput. 437, 127534 (2023)MathSciNet
43.
Zurück zum Zitat M. Van Lier, R. Otten, Planarization by transformation. IEEE Trans. Circuit Theor. 20(2), 169–171 (1973)CrossRef M. Van Lier, R. Otten, Planarization by transformation. IEEE Trans. Circuit Theor. 20(2), 169–171 (1973)CrossRef
44.
Zurück zum Zitat K. Wang, W. Ning, On the degree resistance distance of unicyclic graphs. J. Appl. Math. Phys. 12, 3679–3689 (2024)CrossRef K. Wang, W. Ning, On the degree resistance distance of unicyclic graphs. J. Appl. Math. Phys. 12, 3679–3689 (2024)CrossRef
45.
Zurück zum Zitat H. Wiener, Structural determination of paraffin boiling points. J. Amer. Chem. Soc. 69, 17–20 (1947)CrossRef H. Wiener, Structural determination of paraffin boiling points. J. Amer. Chem. Soc. 69, 17–20 (1947)CrossRef
46.
Zurück zum Zitat W. Xiao, I. Gutman, Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 110(4), 284–289 (2003)CrossRef W. Xiao, I. Gutman, Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 110(4), 284–289 (2003)CrossRef
47.
Zurück zum Zitat S.A. Xu, Y.X. Li, H. Hua, X.F. Pan, On the resistance diameters of graphs and their line graphs. Discrete Appl. Math. 306, 174–185 (2022)MathSciNetCrossRef S.A. Xu, Y.X. Li, H. Hua, X.F. Pan, On the resistance diameters of graphs and their line graphs. Discrete Appl. Math. 306, 174–185 (2022)MathSciNetCrossRef
49.
Zurück zum Zitat Y. Yang, Y. Cao, H. Yao, J. Li, Solution to a conjecture on a Nordhaus-Gaddum type result for the Kirchhoff index. Appl. Math. Comput. 332, 241–249 (2018)MathSciNet Y. Yang, Y. Cao, H. Yao, J. Li, Solution to a conjecture on a Nordhaus-Gaddum type result for the Kirchhoff index. Appl. Math. Comput. 332, 241–249 (2018)MathSciNet
50.
Zurück zum Zitat Y. Yang, D.J. Klein, Resistance distance-based graph invariants of subdivisions and triangulations of graphs. Discrete Appl. Math. 181, 260–274 (2015)MathSciNetCrossRef Y. Yang, D.J. Klein, Resistance distance-based graph invariants of subdivisions and triangulations of graphs. Discrete Appl. Math. 181, 260–274 (2015)MathSciNetCrossRef
51.
Zurück zum Zitat Y. Yang, D.J. Klein, Comparison theorems on resistance distance and Kirchhoff index of \(S\), \(T\)-isomers. Discrete Appl. Math. 175, 87–93 (2014)MathSciNetCrossRef Y. Yang, D.J. Klein, Comparison theorems on resistance distance and Kirchhoff index of \(S\), \(T\)-isomers. Discrete Appl. Math. 175, 87–93 (2014)MathSciNetCrossRef
52.
Zurück zum Zitat Y. Yang, X. Jiang, Unicyclic graphs with extremal Kirchhoff index. MATCH COmmun. Math. Comput. Chem. 60, 107–120 (2008)MathSciNet Y. Yang, X. Jiang, Unicyclic graphs with extremal Kirchhoff index. MATCH COmmun. Math. Comput. Chem. 60, 107–120 (2008)MathSciNet
53.
Zurück zum Zitat Y. Yang, V.R. Rosenfeld, Some spectral invariants of the neighbourhood corona of graphs. Discrete Appl. Math. 247, 300–308 (2018)MathSciNetCrossRef Y. Yang, V.R. Rosenfeld, Some spectral invariants of the neighbourhood corona of graphs. Discrete Appl. Math. 247, 300–308 (2018)MathSciNetCrossRef
54.
Zurück zum Zitat T. Zhang, C. Bu, Detecting community structure in complex networks via resistance distance. Physica A 526, 120782 (2019)CrossRef T. Zhang, C. Bu, Detecting community structure in complex networks via resistance distance. Physica A 526, 120782 (2019)CrossRef
55.
Zurück zum Zitat H.P. Zhang, Y.J. Yang, Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem. 107, 330–339 (2007)CrossRef H.P. Zhang, Y.J. Yang, Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem. 107, 330–339 (2007)CrossRef
56.
Zurück zum Zitat Z. Zhu, J.B. Liu, The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes. Discrete Appl. Math. 254, 256–267 (2019)MathSciNetCrossRef Z. Zhu, J.B. Liu, The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes. Discrete Appl. Math. 254, 256–267 (2019)MathSciNetCrossRef
Metadaten
Titel
Extremal Values on the Kirchhoff Index of the Line Graph of Unicyclic Networks
verfasst von
Muhammad Shoaib Sardar
Shou-Jun Xu
Publikationsdatum
03.12.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02924-7