Abstract
The main objective of this experimentation analysis is to improve the mechanical characteristics of E-glass fabric polymer matrix composites by utilizing amine-terminated butadiene acrylonitrile. In most of the research, only one matrix is used for developing new composites. In this research, two matrix materials are selected, namely epoxy-Ly556 resin and amine-terminated butadiene acrylonitrile, and glass fabrics (E-type) are acted as reinforcement material in the development of composites by vacuum bagging method. Samples are developed and experienced for testing the mechanical properties of the developed composites. The fractured samples are used to analyze the reason for the failures of the composite material during the test of mechanical properties by using scanning electron microscopy. The microscopic examination which is confirmed to the vacuum bagging approach has enhanced adhesion among the matrix material and reinforcement material, and this method has decreased the annullement in the composite materials. The glass fabric/epoxy-reinforced composite has an average tensile strength of 747.68 Kgf/cm2 and a mean flexural strength of 42.99 Kgf/cm2. This analysis shows that amine-terminated butadiene acrylonitrile created good bonding between the materials.