Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 9-10/2021

19.07.2021 | ORIGINAL ARTICLE

Fabrication and characterization of in situ structural health monitoring hybrid continuous carbon/glass fiber–reinforced thermoplastic composite

verfasst von: Congcong Luan, Xinhua Yao, Jianzhong Fu

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 9-10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sensor element integration is a major challenge in the development of structural health monitoring techniques. A novel, multiple-material, in situ, and integrated additive manufacturing method was proposed for the fabrication of a hybrid continuous carbon/glass fiber–reinforced thermoplastic composite that possesses self-sensing capabilities, and in which continuous carbon fibers were employed as sensory elements. Both mechanical and electrical properties were investigated through monotonic and cyclic flexural loading tests. The results revealed that the integration of continuous carbon fibers within a glass fiber–reinforced thermoplastic composite could achieve in situ structural health monitoring without the degradation of mechanical properties. A fractional change in electrical resistance in terms of flexural load showed an excellent linear repeatability in the elastic range and an irreversible dramatic change when structural damage occurred, which is a prospective indicator of both strain/stress self-sensing and damage detection. Finally, a promising application of the proposed hybrid continuous carbon/glass fiber–reinforced thermoplastic composite on a smart prosthetic socket is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lu S, Chen D, Wang X, Xiong X, Ma K, Zhang L, Meng Q (2016) Monitoring the manufacturing process of glass fiber reinforced composites with carbon nanotube buckypaper sensor. Polym Test 52:79–84CrossRef Lu S, Chen D, Wang X, Xiong X, Ma K, Zhang L, Meng Q (2016) Monitoring the manufacturing process of glass fiber reinforced composites with carbon nanotube buckypaper sensor. Polym Test 52:79–84CrossRef
2.
Zurück zum Zitat Zhai Z, Gröschel C, Drummer D (2016) Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures. Polym Test 54:126–133CrossRef Zhai Z, Gröschel C, Drummer D (2016) Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures. Polym Test 54:126–133CrossRef
3.
Zurück zum Zitat Pani B, Chandrasekhar P, Singh S (2019) Application of box-behnken design and neural computation for tribo-mechanical performance analysis of iron-mud-filled glass-fiber/epoxy composite and parametric optimization using PSO. Polym Compos 40(4):1433–1449CrossRef Pani B, Chandrasekhar P, Singh S (2019) Application of box-behnken design and neural computation for tribo-mechanical performance analysis of iron-mud-filled glass-fiber/epoxy composite and parametric optimization using PSO. Polym Compos 40(4):1433–1449CrossRef
4.
Zurück zum Zitat Yang R, He Y (2016) Polymer-matrix composites carbon fibre characterisation and damage inspection using selectively heating thermography (SeHT) through electromagnetic induction. Compos Struct 140:590–601CrossRef Yang R, He Y (2016) Polymer-matrix composites carbon fibre characterisation and damage inspection using selectively heating thermography (SeHT) through electromagnetic induction. Compos Struct 140:590–601CrossRef
5.
Zurück zum Zitat Qing XP, Beard SJ, Kumar A, Ooi TK, Chang FK (2007) Built-in sensor network for structural health monitoring of composite structure. J Intell Mater Syst Struct 18(1):39–49CrossRef Qing XP, Beard SJ, Kumar A, Ooi TK, Chang FK (2007) Built-in sensor network for structural health monitoring of composite structure. J Intell Mater Syst Struct 18(1):39–49CrossRef
6.
Zurück zum Zitat Luan C, Yao X, Liu C, Lan L, Fu J (2018) Self-monitoring continuous carbon fiber reinforced thermoplastic based on dual-material three-dimensional printing integration process. Carbon 140:100–111CrossRef Luan C, Yao X, Liu C, Lan L, Fu J (2018) Self-monitoring continuous carbon fiber reinforced thermoplastic based on dual-material three-dimensional printing integration process. Carbon 140:100–111CrossRef
7.
Zurück zum Zitat Yan R, Chen X, Chandra MS (2017) Structural health monitoring: Springer, New York Yan R, Chen X, Chandra MS (2017) Structural health monitoring: Springer, New York
8.
Zurück zum Zitat Sebastian J, Schehl N, Bouchard M, Boehle M, Li L, Lagounov A, Lafdi K (2014) Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors. Carbon 66:191–200CrossRef Sebastian J, Schehl N, Bouchard M, Boehle M, Li L, Lagounov A, Lafdi K (2014) Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors. Carbon 66:191–200CrossRef
9.
Zurück zum Zitat Ostachowicz W, Soman R, Malinowski P (2019) Optimization of sensor placement for structural health monitoring: a review. Struct Health Monit 18(3):963–988CrossRef Ostachowicz W, Soman R, Malinowski P (2019) Optimization of sensor placement for structural health monitoring: a review. Struct Health Monit 18(3):963–988CrossRef
10.
Zurück zum Zitat Sony S, Laventure S, Sadhu A (2019) A literature review of next-generation smart sensing technology in structural health monitoring. Struct Control Hlth 26(3):e2321CrossRef Sony S, Laventure S, Sadhu A (2019) A literature review of next-generation smart sensing technology in structural health monitoring. Struct Control Hlth 26(3):e2321CrossRef
11.
Zurück zum Zitat Takizawa Y, Chung DDL (2016) Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity. J Mater Sci 51(14):6913–6932CrossRef Takizawa Y, Chung DDL (2016) Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity. J Mater Sci 51(14):6913–6932CrossRef
12.
Zurück zum Zitat Hasan MMB, Matthes A, Schneider P, Cherif C (2011) Application of carbon filament (CF) for structural health monitoring of textile reinforced thermoplastic composites. Mater Technol 26(3):128–134CrossRef Hasan MMB, Matthes A, Schneider P, Cherif C (2011) Application of carbon filament (CF) for structural health monitoring of textile reinforced thermoplastic composites. Mater Technol 26(3):128–134CrossRef
13.
Zurück zum Zitat Roh HD, Lee SY, Jo E, Kim H, Ji W, Park YB (2019) Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement. Compos Struct 216:142–150CrossRef Roh HD, Lee SY, Jo E, Kim H, Ji W, Park YB (2019) Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement. Compos Struct 216:142–150CrossRef
14.
Zurück zum Zitat Ramirez M, Chung DDL (2016) Electromechanical, self-sensing and viscoelastic behavior of carbon fiber tows. Carbon 110:8–16CrossRef Ramirez M, Chung DDL (2016) Electromechanical, self-sensing and viscoelastic behavior of carbon fiber tows. Carbon 110:8–16CrossRef
15.
Zurück zum Zitat Yao X, Luan C, Zhang D, Lan L, Fu J (2017) Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring. Mater Design 114:424–432CrossRef Yao X, Luan C, Zhang D, Lan L, Fu J (2017) Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring. Mater Design 114:424–432CrossRef
16.
Zurück zum Zitat Gallo GJ, Thostenson ET (2015) Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks. Mater Today Commun 3:17–26CrossRef Gallo GJ, Thostenson ET (2015) Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks. Mater Today Commun 3:17–26CrossRef
17.
Zurück zum Zitat Kalashnyk N, Faulques E, Schjødt-Thomsen J, Jensen LR, Rauhe JCM, Pyrz R (2016) Strain sensing in single carbon fiber epoxy composites by simultaneous in-situ Raman and piezoresistance measurements. Carbon 109:124–130CrossRef Kalashnyk N, Faulques E, Schjødt-Thomsen J, Jensen LR, Rauhe JCM, Pyrz R (2016) Strain sensing in single carbon fiber epoxy composites by simultaneous in-situ Raman and piezoresistance measurements. Carbon 109:124–130CrossRef
18.
Zurück zum Zitat Wang K, Wu C, Qian Z, Zhang C, Wang B, Vannan MA (2016) Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit Manuf 12:31–37 Wang K, Wu C, Qian Z, Zhang C, Wang B, Vannan MA (2016) Dual-material 3D printed metamaterials with tunable mechanical properties for patient-specific tissue-mimicking phantoms. Addit Manuf 12:31–37
19.
Zurück zum Zitat Ali MH, Mir-Nasiri N, Ko WL (2016) Multi-nozzle extrusion system for 3D printer and its control mechanism. Int J Adv Manuf Technol 86(1-4):999–1010CrossRef Ali MH, Mir-Nasiri N, Ko WL (2016) Multi-nozzle extrusion system for 3D printer and its control mechanism. Int J Adv Manuf Technol 86(1-4):999–1010CrossRef
20.
Zurück zum Zitat Luan C, Yao X, Zhang C, Wang B, Fu J (2019) Large-scale deformation and damage detection of 3D printed continuous carbon fiber reinforced polymer-matrix composite structures. Compos Struct 212:552–560CrossRef Luan C, Yao X, Zhang C, Wang B, Fu J (2019) Large-scale deformation and damage detection of 3D printed continuous carbon fiber reinforced polymer-matrix composite structures. Compos Struct 212:552–560CrossRef
21.
Zurück zum Zitat Pappas JM, Thakur AR, Ming CL, Dong X (2021) A parametric study and characterization of additively manufactured continuous carbon fiber reinforced composites for high-speed 3D printing. Int J Adv Manuf Technol 113:2137–2151CrossRef Pappas JM, Thakur AR, Ming CL, Dong X (2021) A parametric study and characterization of additively manufactured continuous carbon fiber reinforced composites for high-speed 3D printing. Int J Adv Manuf Technol 113:2137–2151CrossRef
23.
Zurück zum Zitat Chaudhari R, Vora JJ, Patel V, López de Lacalle LN, Parikh DM (2020) Effect of WEDM process parameters on surface morphology of nitinol shape memory alloy. Materials 13(21):4943CrossRef Chaudhari R, Vora JJ, Patel V, López de Lacalle LN, Parikh DM (2020) Effect of WEDM process parameters on surface morphology of nitinol shape memory alloy. Materials 13(21):4943CrossRef
24.
Zurück zum Zitat Eric MD, Ryan W (2016) Multiprocess 3D printing for increasing component functionality. Science 353(6307):aaf2093CrossRef Eric MD, Ryan W (2016) Multiprocess 3D printing for increasing component functionality. Science 353(6307):aaf2093CrossRef
25.
Zurück zum Zitat Saroia J, Wang Y, Wei Q, Lei M, Li X, Guo Y, Zhang K (2020) A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol 106(5):1695–1721CrossRef Saroia J, Wang Y, Wei Q, Lei M, Li X, Guo Y, Zhang K (2020) A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol 106(5):1695–1721CrossRef
26.
Zurück zum Zitat Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep-UK 6:23058CrossRef Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep-UK 6:23058CrossRef
27.
Zurück zum Zitat Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225CrossRef Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225CrossRef
28.
Zurück zum Zitat Yang C, Tian X, Liu T, Cao Y, Li D (2017) 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp J 23(1):209–215CrossRef Yang C, Tian X, Liu T, Cao Y, Li D (2017) 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyp J 23(1):209–215CrossRef
29.
Zurück zum Zitat Parandoush P, Tucker L, Zhou C, Lin D (2017) Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater Design 131:186–195CrossRef Parandoush P, Tucker L, Zhou C, Lin D (2017) Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater Design 131:186–195CrossRef
30.
Zurück zum Zitat Nakagawa Y, Mori KI, Maeno T (2017) 3D printing of carbon fibre-reinforced plastic parts. Inter J Adv Manuf Tech 91(5-8):2811–2817CrossRef Nakagawa Y, Mori KI, Maeno T (2017) 3D printing of carbon fibre-reinforced plastic parts. Inter J Adv Manuf Tech 91(5-8):2811–2817CrossRef
31.
Zurück zum Zitat Naranjo-Lozada J, Ahuett-Garza H, Orta-Castañón P, Verbeeten WMH, Sáiz-González D (2019) Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit Manuf 26:227–241 Naranjo-Lozada J, Ahuett-Garza H, Orta-Castañón P, Verbeeten WMH, Sáiz-González D (2019) Tensile properties and failure behavior of chopped and continuous carbon fiber composites produced by additive manufacturing. Addit Manuf 26:227–241
32.
Zurück zum Zitat Sugiyama K, Matsuzaki R, Ueda M, Todoroki A, Hirano Y (2018) 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Compos Part A-Appl S 113:114–121CrossRef Sugiyama K, Matsuzaki R, Ueda M, Todoroki A, Hirano Y (2018) 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Compos Part A-Appl S 113:114–121CrossRef
33.
Zurück zum Zitat Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537–548CrossRef Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537–548CrossRef
34.
Zurück zum Zitat Fidan I, Imeri A, Gupta A, Hasanov S, Nasirov A, Elliott A, Alifui-Segbaya F, Nanami N (2019) The trends and challenges of fiber reinforced additive manufacturing. Int J Adv Manuf Technol 102:1801–1818CrossRef Fidan I, Imeri A, Gupta A, Hasanov S, Nasirov A, Elliott A, Alifui-Segbaya F, Nanami N (2019) The trends and challenges of fiber reinforced additive manufacturing. Int J Adv Manuf Technol 102:1801–1818CrossRef
35.
Zurück zum Zitat Melenka GW, Cheung BKO, Schofield JS, Dawson MR, Carey JP (2016) Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos Struct 153:866–875CrossRef Melenka GW, Cheung BKO, Schofield JS, Dawson MR, Carey JP (2016) Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos Struct 153:866–875CrossRef
36.
Zurück zum Zitat Caminero MA, Chacón JM, García-Moreno I, Rodríguez GP (2018) Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos Part B-Eng 148:93–103CrossRef Caminero MA, Chacón JM, García-Moreno I, Rodríguez GP (2018) Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos Part B-Eng 148:93–103CrossRef
37.
Zurück zum Zitat Liu S, Li Y, Li N (2018) A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures. Mater Design 137:235–244CrossRef Liu S, Li Y, Li N (2018) A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures. Mater Design 137:235–244CrossRef
38.
Zurück zum Zitat Hou Z, Tian X, Zhang J, Li D (2018) 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct 184:1005–1010CrossRef Hou Z, Tian X, Zhang J, Li D (2018) 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct 184:1005–1010CrossRef
39.
Zurück zum Zitat Chabaud G, Castro M, Denoual C, Le DA (2019) Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Addit Manuf 26:94–105 Chabaud G, Castro M, Denoual C, Le DA (2019) Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Addit Manuf 26:94–105
40.
Zurück zum Zitat Goh GD, Dikshit V, Nagalingam AP, Goh GL, Agarwala S, Sing SL, Wei J, Yeong WY (2018) Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Design 137:79–89CrossRef Goh GD, Dikshit V, Nagalingam AP, Goh GL, Agarwala S, Sing SL, Wei J, Yeong WY (2018) Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Design 137:79–89CrossRef
41.
Zurück zum Zitat Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353CrossRef Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353CrossRef
Metadaten
Titel
Fabrication and characterization of in situ structural health monitoring hybrid continuous carbon/glass fiber–reinforced thermoplastic composite
verfasst von
Congcong Luan
Xinhua Yao
Jianzhong Fu
Publikationsdatum
19.07.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 9-10/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07666-3

Weitere Artikel der Ausgabe 9-10/2021

The International Journal of Advanced Manufacturing Technology 9-10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.