Skip to main content
Erschienen in: Cellulose 14/2020

18.07.2020 | Original Research

Fabrication of a high phosphorus–nitrogen content modifier with star structure for effectively enhancing flame retardancy of lyocell fibers

verfasst von: Qiu-yan Zhang, Xiao-hui Liu, Yuan-lin Ren, Yan-guang Zhang, Bo-wen Cheng

Erschienen in: Cellulose | Ausgabe 14/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel phosphoramidate salt fire retardant (FR) with high phosphorus–nitrogen (P–N) content, tris(2-aminoethyl)amine phosphoramidate salt (TAEAPA), was synthesized by a simple design philosophy. A three-arm star-like structure FR with a high level of P or N content was obtained. Phosphorus and nitrogen contents of TAEAPA increased up to 8.6 at% and 14.5 at%, respectively. Subsequently, TAEAPA was employed to finish lyocell fibers through the classical dip-dry-cure technique. Consequently, the thermal stability and fire retardancy of finished lyocell fibers were improved significantly, as evidenced by thermogravimetric and vertical flammability test. Finished lyocell fibers exhibited higher char residues (39.2 wt%) and lower degradation rate (0.6%/°C) under nitrogen atmosphere. Besides, lyocell fabrics finished by 300 g/L of TAEAPA finishing solution only had a char length of 53 mm when exposed to flame more than 60 s, and immediately extinguished after the removal of flame. Thermogravimetry-infrared and pyrolysis gas chromatography/mass spectrometry coupled techniques confirmed that the high contents of P and N included in TAEAPA played a good synergistic effect on both condensed and gaseous phase during the thermal pyrolysis process of lyocell fibers.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydr Polym 85:599–608 Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydr Polym 85:599–608
Zurück zum Zitat Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785 Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785
Zurück zum Zitat Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS (2014) Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett 135:226–228 Bai BC, Kim EA, Jeon YP, Lee CW, In SJ, Lee YS, Im JS (2014) Improved flame-retardant properties of lyocell fiber achieved by phosphorus compound. Mater Lett 135:226–228
Zurück zum Zitat Blum A, Ames BN (1977) Flame-retardant additives as possible cancer hazards. Sci China Chem 195:17–23 Blum A, Ames BN (1977) Flame-retardant additives as possible cancer hazards. Sci China Chem 195:17–23
Zurück zum Zitat Buser HR (1986) Polybrominated dibenzofurans and dibenzo-p-dioxins: thermal reaction products of polybrominated diphenyl ether flame retardants. Environ Sci Technol 20:404–408PubMed Buser HR (1986) Polybrominated dibenzofurans and dibenzo-p-dioxins: thermal reaction products of polybrominated diphenyl ether flame retardants. Environ Sci Technol 20:404–408PubMed
Zurück zum Zitat Chen X, Jiao C (2008) Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stab 93:2222–2225 Chen X, Jiao C (2008) Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stab 93:2222–2225
Zurück zum Zitat Chen R, Huang X, Zheng R, Xie D, Mei Y, Zou R (2020) Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage. Chem Eng J 380:122500 Chen R, Huang X, Zheng R, Xie D, Mei Y, Zou R (2020) Flame-retardancy and thermal properties of a novel phosphorus-modified PCM for thermal energy storage. Chem Eng J 380:122500
Zurück zum Zitat Cheng X, Yang CQ (2009) Flame retardant finishing of cotton fleece fabric: part V. Phosphorus-containing maleic acid oligomers. Fire Mater 33:365–375 Cheng X, Yang CQ (2009) Flame retardant finishing of cotton fleece fabric: part V. Phosphorus-containing maleic acid oligomers. Fire Mater 33:365–375
Zurück zum Zitat Cheng XW, Guan JP, Yang XH, Tang RC, Yao F (2019) A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J Clean Prod 223:342–349 Cheng XW, Guan JP, Yang XH, Tang RC, Yao F (2019) A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric. J Clean Prod 223:342–349
Zurück zum Zitat Fiss BG, Hatherly L, Stein RS, Friščić T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain Chem Eng 7:7951–7959 Fiss BG, Hatherly L, Stein RS, Friščić T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain Chem Eng 7:7951–7959
Zurück zum Zitat Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrol 78:371–377 Gaan S, Sun G (2007) Effect of phosphorus and nitrogen on flame retardant cellulose: a study of phosphorus compounds. J Anal Appl Pyrol 78:371–377
Zurück zum Zitat Hajj R, El Hage R, Sonnier R, Otazaghine B, Gallard B, Rouif S, Nakhl M, Lopez-Cuesta J-M (2018) Grafting of phosphorus flame retardants on flax fabrics: comparison between two routes. Polym Degrad Stab 147:25–34 Hajj R, El Hage R, Sonnier R, Otazaghine B, Gallard B, Rouif S, Nakhl M, Lopez-Cuesta J-M (2018) Grafting of phosphorus flame retardants on flax fabrics: comparison between two routes. Polym Degrad Stab 147:25–34
Zurück zum Zitat Hall ME, Horrocks AR, Seddon H (1999) The fammability of lyocell. Polym Degrad Stab 64(1999):505–510 Hall ME, Horrocks AR, Seddon H (1999) The fammability of lyocell. Polym Degrad Stab 64(1999):505–510
Zurück zum Zitat Holder KM, Smith RJ, Grunlan JC (2017) A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J Mater Sci 52:12923–12959 Holder KM, Smith RJ, Grunlan JC (2017) A review of flame retardant nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. J Mater Sci 52:12923–12959
Zurück zum Zitat Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibers. JSDC 99:191–197 Horrocks AR (1983) An introduction to the burning behaviour of cellulosic fibers. JSDC 99:191–197
Zurück zum Zitat Joshi HD, Joshi DH, Patel MG (2010) Dyeing and finishing of lyocell union fabrics: an industrial study. Color Technol 126:194–200 Joshi HD, Joshi DH, Patel MG (2010) Dyeing and finishing of lyocell union fabrics: an industrial study. Color Technol 126:194–200
Zurück zum Zitat Kim HG, Bai BC, In SJ, Lee YS (2016) Effects of an inorganic ammonium salt treatment on the flame-retardant performance of lyocell fibers. Carbon Lett 17:74–78 Kim HG, Bai BC, In SJ, Lee YS (2016) Effects of an inorganic ammonium salt treatment on the flame-retardant performance of lyocell fibers. Carbon Lett 17:74–78
Zurück zum Zitat Kok YN, Hovsepian PE, Haasch R, Petrov I (2005) Raman spectroscopy study of C/Cr coatings deposited by the combined steered cathodic ARC/unbalanced magnetron sputtering technique. Surf Coat Thechnol 200:1117–1122 Kok YN, Hovsepian PE, Haasch R, Petrov I (2005) Raman spectroscopy study of C/Cr coatings deposited by the combined steered cathodic ARC/unbalanced magnetron sputtering technique. Surf Coat Thechnol 200:1117–1122
Zurück zum Zitat Levchik SV, Weil ED (2016) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364 Levchik SV, Weil ED (2016) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364
Zurück zum Zitat Liu XH, Zhang QY, Cheng BW, Ren YL, Zhang YG, Ding C (2017) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811 Liu XH, Zhang QY, Cheng BW, Ren YL, Zhang YG, Ding C (2017) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811
Zurück zum Zitat Liu XH, Zhang YG, Cheng BW, Ren YL, Zhang QY, Ding C, Peng B (2018) Preparation of durable and flame retardant lyocell fibers by a one-pot chemical treatment. Cellulose 25:6745–6758 Liu XH, Zhang YG, Cheng BW, Ren YL, Zhang QY, Ding C, Peng B (2018) Preparation of durable and flame retardant lyocell fibers by a one-pot chemical treatment. Cellulose 25:6745–6758
Zurück zum Zitat Liu MS, Huang S, Zhang GX, Zhang FX (2019a) Synthesis of P-N-Si synergistic flame retardant based on a cyclodiphosphazane derivative for use on cotton fabric. Cellulose 26:7553–7567 Liu MS, Huang S, Zhang GX, Zhang FX (2019a) Synthesis of P-N-Si synergistic flame retardant based on a cyclodiphosphazane derivative for use on cotton fabric. Cellulose 26:7553–7567
Zurück zum Zitat Liu ZL, Shang SM, Chiu KL, Jiang SX, Dai FY (2019b) Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polym Degrad Stab 167:277–282 Liu ZL, Shang SM, Chiu KL, Jiang SX, Dai FY (2019b) Fabrication of conductive and flame-retardant bifunctional cotton fabric by polymerizing pyrrole and doping phytic acid. Polym Degrad Stab 167:277–282
Zurück zum Zitat Liu XH, Zhang QY, Peng B, Ren YL, Cheng BW, Ding C, Su XW, He J, Lin SG (2020) Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. J Clean Prod 243:118641 Liu XH, Zhang QY, Peng B, Ren YL, Cheng BW, Ding C, Su XW, He J, Lin SG (2020) Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. J Clean Prod 243:118641
Zurück zum Zitat Mohamed OA, Abdel-Mohdy FA (2006) Preparation of flame-retardant leather pretreated with pyrovatex CP. J Appl Polym Sci 99:2039–2043 Mohamed OA, Abdel-Mohdy FA (2006) Preparation of flame-retardant leather pretreated with pyrovatex CP. J Appl Polym Sci 99:2039–2043
Zurück zum Zitat Nabil B, Ahmida E, Christine C, Julien V, Abdelkrim A (2018) Polyfunctional cotton fabrics with catalytic activity and antibacterial capacity. Chem Eng J 351:328–339 Nabil B, Ahmida E, Christine C, Julien V, Abdelkrim A (2018) Polyfunctional cotton fabrics with catalytic activity and antibacterial capacity. Chem Eng J 351:328–339
Zurück zum Zitat Nazir R, Gaan S (2018) Recent developments in P(O/S)–N containing flame retardants. J Appl Polym Sci 47910:218–244 Nazir R, Gaan S (2018) Recent developments in P(O/S)–N containing flame retardants. J Appl Polym Sci 47910:218–244
Zurück zum Zitat Nguyen TM, Chang SC, Condon B, Slopek R, Graves E, Yoshioka-Tarver M (2013) Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Ind Eng Chem Res 52:4715–4724 Nguyen TM, Chang SC, Condon B, Slopek R, Graves E, Yoshioka-Tarver M (2013) Structural effect of phosphoramidate derivatives on the thermal and flame retardant behaviors of treated cotton cellulose. Ind Eng Chem Res 52:4715–4724
Zurück zum Zitat Nielsen GD, Wolkoff P (2010) Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol 84:423–446PubMedPubMedCentral Nielsen GD, Wolkoff P (2010) Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol 84:423–446PubMedPubMedCentral
Zurück zum Zitat Okubayashi S, Griesser U, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299 Okubayashi S, Griesser U, Bechtold T (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr Polym 58:293–299
Zurück zum Zitat Paosawatyanyong B, Jermsutjarit P, Bhanthumnavin W (2012) Surface nanomodification of cotton fiber for flame retardant application. J Nanosci Nanotechnol 12:748–753PubMed Paosawatyanyong B, Jermsutjarit P, Bhanthumnavin W (2012) Surface nanomodification of cotton fiber for flame retardant application. J Nanosci Nanotechnol 12:748–753PubMed
Zurück zum Zitat Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2016) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210 Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2016) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210
Zurück zum Zitat Prabhakar MN, Raghavendra GM, Vijaykumar BVD, Patil K, Seo J, Jung-il S (2019) Synthesis of a novel compound based on chitosan and ammonium polyphosphate for flame retardancy applications. Cellulose 26:8801–8812 Prabhakar MN, Raghavendra GM, Vijaykumar BVD, Patil K, Seo J, Jung-il S (2019) Synthesis of a novel compound based on chitosan and ammonium polyphosphate for flame retardancy applications. Cellulose 26:8801–8812
Zurück zum Zitat Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, Mikucioniene D, Gaan S (2016) Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8:293PubMedCentral Salmeia KA, Jovic M, Ragaisiene A, Rukuiziene Z, Milasius R, Mikucioniene D, Gaan S (2016) Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8:293PubMedCentral
Zurück zum Zitat Seddon H, Hall M, Horrocks AR (1996) The flame retardancy of lyocell fibers. Polym Degrad Stab 54:401–402 Seddon H, Hall M, Horrocks AR (1996) The flame retardancy of lyocell fibers. Polym Degrad Stab 54:401–402
Zurück zum Zitat Shen Y, Zhen L, Huang D, Xue J (2014) Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber. Cellulose 21:3745–3754 Shen Y, Zhen L, Huang D, Xue J (2014) Improving anti-UV performances of cotton fabrics via graft modification using a reactive UV-absorber. Cellulose 21:3745–3754
Zurück zum Zitat Shibata M, Oyamada S, Kobayashi S, Yaginuma D (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92:3857–3863 Shibata M, Oyamada S, Kobayashi S, Yaginuma D (2004) Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J Appl Polym Sci 92:3857–3863
Zurück zum Zitat Tao F, Sellstrom U, de Wit Cynthia A (2019) Organohalogenated flame retardants and organophosphate esters in office air and dust from Sweden. Environ Sci Technol 53:2124–2133PubMed Tao F, Sellstrom U, de Wit Cynthia A (2019) Organohalogenated flame retardants and organophosphate esters in office air and dust from Sweden. Environ Sci Technol 53:2124–2133PubMed
Zurück zum Zitat Thomas B, Raj MC, Athira KB, Rubiyah MH, Jithin J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625PubMed Thomas B, Raj MC, Athira KB, Rubiyah MH, Jithin J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625PubMed
Zurück zum Zitat Tian P, Lu Y, Wang D, Zhang G, Zhang F (2019) Synthesis of a new N-P durable flame retardant for cotton fabrics. Polym Degrad Stab 165:220–228 Tian P, Lu Y, Wang D, Zhang G, Zhang F (2019) Synthesis of a new N-P durable flame retardant for cotton fabrics. Polym Degrad Stab 165:220–228
Zurück zum Zitat Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475 Wan C, Jiao Y, Wei S, Zhang L, Wu Y, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475
Zurück zum Zitat Wang D, Feng X, Zhang L, Li M, Liu M, Tian A, Fu S (2019a) Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chem Eng J 375:121933 Wang D, Feng X, Zhang L, Li M, Liu M, Tian A, Fu S (2019a) Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chem Eng J 375:121933
Zurück zum Zitat Wang S, Du X, Deng S, Fu X, Du Z, Cheng X, Wang H (2019b) A polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric. Cellulose 26:7009–7023 Wang S, Du X, Deng S, Fu X, Du Z, Cheng X, Wang H (2019b) A polydopamine-bridged hierarchical design for fabricating flame-retarded, superhydrophobic, and durable cotton fabric. Cellulose 26:7009–7023
Zurück zum Zitat Xu Q, Shen L, Duan P, Zhang L, Fu F, Liu X (2020) Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist. Chem Eng J 379:122401 Xu Q, Shen L, Duan P, Zhang L, Fu F, Liu X (2020) Superhydrophobic cotton fabric with excellent healability fabricated by the “grafting to” method using a diblock copolymer mist. Chem Eng J 379:122401
Zurück zum Zitat Yang CQ, Wu W, Xu Y (2005) The combination of a hydroxy-functional organophosphorus oligomer and melamine-formaldehyde as a flame retarding finishing system for cotton. Fire Mater 29:109–120 Yang CQ, Wu W, Xu Y (2005) The combination of a hydroxy-functional organophosphorus oligomer and melamine-formaldehyde as a flame retarding finishing system for cotton. Fire Mater 29:109–120
Zurück zum Zitat Zhang H, Hou C, Song L, Ma Y, Ali Z, Gu J, Zhang B, Zhang H, Zhang Q (2018) A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating. Chem Eng J 334:598–610 Zhang H, Hou C, Song L, Ma Y, Ali Z, Gu J, Zhang B, Zhang H, Zhang Q (2018) A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating. Chem Eng J 334:598–610
Zurück zum Zitat Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrol 71:645–655 Zhu P, Sui S, Wang B, Sun K, Sun G (2004) A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS. J Anal Appl Pyrol 71:645–655
Metadaten
Titel
Fabrication of a high phosphorus–nitrogen content modifier with star structure for effectively enhancing flame retardancy of lyocell fibers
verfasst von
Qiu-yan Zhang
Xiao-hui Liu
Yuan-lin Ren
Yan-guang Zhang
Bo-wen Cheng
Publikationsdatum
18.07.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 14/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03333-0

Weitere Artikel der Ausgabe 14/2020

Cellulose 14/2020 Zur Ausgabe