Skip to main content
Erschienen in: Microsystem Technologies 7/2017

08.06.2016 | Technical Paper

Fabrication of a silicon based vertical sensitive low-g inertial micro-switch for linear acceleration sensing

verfasst von: Fengtian Zhang, Mingquan Yuan, Weifeng Jin, Zhuang Xiong

Erschienen in: Microsystem Technologies | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most of the MEMS inertial switches developed in recent years are intended for shock and impact sensing with a threshold value above 40 g. These switches were designed as lateral sensitive and were fabricated using either electroplating or silicon micromachining technology. Considering on the other hand the low-g micro-switch (threshold value <10 g), usually consists of a high volume proof mass and a low stiffness spring, were rarely reported because these switches were less practical to be fabricated with lateral sensitive structure design. In this paper, we report on a silicon based vertical sensitive low-g inertial switch designed for linear acceleration sensing. The inertial switch consists of a cylinder shaped proof mass, suspended by circular shaped spiral spring. The fabrication process is based on a customized symmetrical double-buried layer SOI wafer with standard silicon micromachining. The centrifugal experiment results show that the threshold value is around 5.5 g which is close to the designed value.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chen W, Yang Z, Wang Y, Ding G, Wang H, Zhao X (2014) Influence of applied acceleration loads on contact time and threshold in an inertial microswitch with flexible contact-enhanced structure. Sens Actuators A Phys. 216:7–18CrossRef Chen W, Yang Z, Wang Y, Ding G, Wang H, Zhao X (2014) Influence of applied acceleration loads on contact time and threshold in an inertial microswitch with flexible contact-enhanced structure. Sens Actuators A Phys. 216:7–18CrossRef
Zurück zum Zitat Currano LJ (2010) Latching in a MEMS shock sensor modeling and experiments. Sens Actuators A Phys. 159:41–50CrossRef Currano LJ (2010) Latching in a MEMS shock sensor modeling and experiments. Sens Actuators A Phys. 159:41–50CrossRef
Zurück zum Zitat Field RV Jr, Epp DS (2007) Development and calibration of a stochastic dynamics model for the design of a MEMS inertial switch. Sens Actuators A Phys. 134:109–118CrossRef Field RV Jr, Epp DS (2007) Development and calibration of a stochastic dynamics model for the design of a MEMS inertial switch. Sens Actuators A Phys. 134:109–118CrossRef
Zurück zum Zitat Frangi A, DeMasi B, Confalonieri F, Baldasarre L (2013) Threshold shock sensor based on a bi-stable mechanism. In: TRANSDUCERS’13, 17th international conference on solid-state sensors, actuators and microsystems, pp 626–629 Frangi A, DeMasi B, Confalonieri F, Baldasarre L (2013) Threshold shock sensor based on a bi-stable mechanism. In: TRANSDUCERS’13, 17th international conference on solid-state sensors, actuators and microsystems, pp 626–629
Zurück zum Zitat Gerson Y, Schreiber D, Grau H, Krylov S (2014) Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process. J Micromech Microeng 24:025008CrossRef Gerson Y, Schreiber D, Grau H, Krylov S (2014) Meso scale MEMS inertial switch fabricated using an electroplated metal-on-insulator process. J Micromech Microeng 24:025008CrossRef
Zurück zum Zitat Go JS, Cho YH, Kwak BM, Park K (1996) Snapping microswitches with adjustable acceleration threshold. Sens Actuators A Phys. 54:579–583CrossRef Go JS, Cho YH, Kwak BM, Park K (1996) Snapping microswitches with adjustable acceleration threshold. Sens Actuators A Phys. 54:579–583CrossRef
Zurück zum Zitat Guo Z, Yan G (2011) Design, fabrication and characterization of a latching acceleration switch with multi-contacts independent to the proof-mass. Sens Actuators A Phys. 166:187–192CrossRef Guo Z, Yan G (2011) Design, fabrication and characterization of a latching acceleration switch with multi-contacts independent to the proof-mass. Sens Actuators A Phys. 166:187–192CrossRef
Zurück zum Zitat Lee J (2012) Deformable carbon nanotube-contact pads for inertial microswitch to extend contact time. IEEE Trans. Ind. Electron. 59(12):4914–4920CrossRef Lee J (2012) Deformable carbon nanotube-contact pads for inertial microswitch to extend contact time. IEEE Trans. Ind. Electron. 59(12):4914–4920CrossRef
Zurück zum Zitat Lee S, Cho J, Najafi K (2007) Fabrication of vertical comb electrodes using selective anodic bonding. In: Micro Electro Mechanical Systems (MEMS2007), pp 349–352 Lee S, Cho J, Najafi K (2007) Fabrication of vertical comb electrodes using selective anodic bonding. In: Micro Electro Mechanical Systems (MEMS2007), pp 349–352
Zurück zum Zitat Ma W, Zohar Y, Wong M (2003) Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology. J. Micromech Microeng 13:892–899CrossRef Ma W, Zohar Y, Wong M (2003) Design and characterization of inertia-activated electrical micro-switches fabricated and packaged using low-temperature photoresist molded metal-electroplating technology. J. Micromech Microeng 13:892–899CrossRef
Zurück zum Zitat Matsunaga T, Esashi M (2002a) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys. 100:10–17CrossRef Matsunaga T, Esashi M (2002a) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys. 100:10–17CrossRef
Zurück zum Zitat Matsunaga T, Esashi M (2002b) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys 100(1):10–17CrossRef Matsunaga T, Esashi M (2002b) Acceleration switch with extended holding time using squeeze film effect for side airbag systems. Sens Actuators A Phys 100(1):10–17CrossRef
Zurück zum Zitat Michaelis S, Timme HJ, Wycisk M, Binder J (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transformation applications. J. Micromech Microeng 10:120–123CrossRef Michaelis S, Timme HJ, Wycisk M, Binder J (2000) Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transformation applications. J. Micromech Microeng 10:120–123CrossRef
Zurück zum Zitat Selvakumar A, Yazdi N, Najafi K (2001) A wide-range micromachined threshold accelerometer array and interface circuit. J. Micromech Microeng 11:118–125CrossRef Selvakumar A, Yazdi N, Najafi K (2001) A wide-range micromachined threshold accelerometer array and interface circuit. J. Micromech Microeng 11:118–125CrossRef
Zurück zum Zitat Wang Y, Yang Z, Xu Q, Chen W, Ding G, Zhao X (2015) Design, simulation and characterization of a MEMS inertia switch with flexible CNTs-Cu composite array layer between electrodes for prolonging contact time. J. Micromech Microeng 25:085012CrossRef Wang Y, Yang Z, Xu Q, Chen W, Ding G, Zhao X (2015) Design, simulation and characterization of a MEMS inertia switch with flexible CNTs-Cu composite array layer between electrodes for prolonging contact time. J. Micromech Microeng 25:085012CrossRef
Zurück zum Zitat Xi Z, Zhang P, Nie W, Du L, Cao Y (2014) A novel MEMS omnidirectional inertial switch with flexible electrodes. Sens Actuators A Phys. 212:93–101CrossRef Xi Z, Zhang P, Nie W, Du L, Cao Y (2014) A novel MEMS omnidirectional inertial switch with flexible electrodes. Sens Actuators A Phys. 212:93–101CrossRef
Zurück zum Zitat Yang Z, Feng Q, Wang Y, Chen W, Wang Z, Ding G, Zhao X (2013) The design, simulation and fabrication of a novel horizontal sensitive inertial micro-switch with low g value based on MEMS micromachining technology. J. Micromech Microeng 23:105013CrossRef Yang Z, Feng Q, Wang Y, Chen W, Wang Z, Ding G, Zhao X (2013) The design, simulation and fabrication of a novel horizontal sensitive inertial micro-switch with low g value based on MEMS micromachining technology. J. Micromech Microeng 23:105013CrossRef
Zurück zum Zitat Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys. 166:234–240CrossRef Yoo K, Park U, Kim J (2011) Development and characterization of a novel configurable MEMS inertial switch using a microscale liquid-metal droplet in a microstructured channel. Sens Actuators A Phys. 166:234–240CrossRef
Metadaten
Titel
Fabrication of a silicon based vertical sensitive low-g inertial micro-switch for linear acceleration sensing
verfasst von
Fengtian Zhang
Mingquan Yuan
Weifeng Jin
Zhuang Xiong
Publikationsdatum
08.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3008-y

Weitere Artikel der Ausgabe 7/2017

Microsystem Technologies 7/2017 Zur Ausgabe

Neuer Inhalt