Skip to main content

2023 | OriginalPaper | Buchkapitel

8. Fabrication of Advanced 2D Nanomaterials Membranes for Desalination and Wastewater Treatment

verfasst von : Koena Selatile, Suprakas Sinha Ray, Neeraj Kumar, Vincent Ojijo, Rotimi Emmanuel Sadiku

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Environmental concerns regarding water shortages due to industrialization and pollution have led to escalation in research towards efficiency in wastewater treatment and desalination. To date, nanotechnology is the most effective solution towards water shortages and is currently used for wastewater treatment and desalination. Among the emerging nanosheets, two-dimensional (2D) nanosheets have gained much attention since graphene was discovered in the fabrication of cost-effective and sustainable membranes for environmental remediation. Recently, 2D nanoengineered membrane technologies have revealed a new potential for removing hazardous compounds from our surroundings. The present chapter gives an overview of the concept of membrane technology, membrane fabrication techniques and the importance of 2D nanomaterials in the desalination and wastewater treatment membranes. Firstly, popular fabrication methods for membranes, such as electrospinning, drop-casting, spin-coating, solution casting and phase inversion, will be discussed. This will be followed by the application of 2D nanoengineered membranes incorporated with graphene, MXenes, molybdenum disulfide (MoS2) and other nanosheets, in their 2D form, for excellent improvement in desalination and wastewater treatment. Notably, the chapter emphasizes the wide range of membrane applications as well as their potential and challenges for use in the development of nanotechnology-based environmental remediation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)CrossRef M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)CrossRef
2.
Zurück zum Zitat B. Schreiber, T. Brinkmann, V. Schmalz, E. Worch, Adsorption of dissolved organic matter onto activated carbon—the influence of temperature, absorption wavelength, and molecular size. Water Res. 39, 3449–3456 (2005)CrossRef B. Schreiber, T. Brinkmann, V. Schmalz, E. Worch, Adsorption of dissolved organic matter onto activated carbon—the influence of temperature, absorption wavelength, and molecular size. Water Res. 39, 3449–3456 (2005)CrossRef
3.
Zurück zum Zitat E.L. Sharp, S.A. Parsons, B. Jefferson, Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Sci. Total Environ. 363, 183–194 (2006)CrossRef E.L. Sharp, S.A. Parsons, B. Jefferson, Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Sci. Total Environ. 363, 183–194 (2006)CrossRef
4.
Zurück zum Zitat E.P. Holinger, K.A. Ross, C.E. Robertson, M.J. Stevens, J.K. Harris, N.R. Pace, Molecular analysis of point-of-use municipal drinking water microbiology. Water Res. 49, 225–235 (2014)CrossRef E.P. Holinger, K.A. Ross, C.E. Robertson, M.J. Stevens, J.K. Harris, N.R. Pace, Molecular analysis of point-of-use municipal drinking water microbiology. Water Res. 49, 225–235 (2014)CrossRef
5.
Zurück zum Zitat S.S. Ray, R. Gusain, N. Kumar, Carbon nanomaterial-based adsorbents for water purification: Fundamentals and applications. (Elsevier, 2020) S.S. Ray, R. Gusain, N. Kumar, Carbon nanomaterial-based adsorbents for water purification: Fundamentals and applications. (Elsevier, 2020)
6.
Zurück zum Zitat N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces 11, 19141–19155 (2019)CrossRef N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces 11, 19141–19155 (2019)CrossRef
7.
Zurück zum Zitat A.R. Mahdavian, M.A.-S. Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J. 159:264–271 (2010) A.R. Mahdavian, M.A.-S. Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J. 159:264–271 (2010)
8.
Zurück zum Zitat S.S. Ray, R. Gusain, N. Kumar, Chapter three–Water purification using various technologies and their advantages and disadvantages, in Carbon nanomaterial-based adsorbents for water purification, ed. by Ray S.S. Gusain, R.N. Kumar (Elsevier; 2020), pp. 37–66 S.S. Ray, R. Gusain, N. Kumar, Chapter three–Water purification using various technologies and their advantages and disadvantages, in Carbon nanomaterial-based adsorbents for water purification, ed. by Ray S.S. Gusain, R.N. Kumar (Elsevier; 2020), pp. 37–66
9.
Zurück zum Zitat A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi-Maragheh, Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J. Hazard. Mater. 190, 916–921 (2011)CrossRef A. Ghaemi, M. Torab-Mostaedi, M. Ghannadi-Maragheh, Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J. Hazard. Mater. 190, 916–921 (2011)CrossRef
10.
Zurück zum Zitat A.K. Fard, G. McKay, R. Chamoun, T. Rhadfi, H. Preud’Homme, M.A. Atieh, Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 317, 331–342 (2017)CrossRef A.K. Fard, G. McKay, R. Chamoun, T. Rhadfi, H. Preud’Homme, M.A. Atieh, Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 317, 331–342 (2017)CrossRef
11.
Zurück zum Zitat Z. Ahmed, F. Rehman, U. Ali, A. Ali, M. Iqbal, K.H. Thebo, Recent advances in MXene-based separation membranes. ChemBioEng Rev. 8, 110–120 (2021)CrossRef Z. Ahmed, F. Rehman, U. Ali, A. Ali, M. Iqbal, K.H. Thebo, Recent advances in MXene-based separation membranes. ChemBioEng Rev. 8, 110–120 (2021)CrossRef
12.
Zurück zum Zitat Ihsanullah, Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separat. Purificat. Technol. 209, 307–337 (2019) Ihsanullah, Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separat. Purificat. Technol. 209, 307–337 (2019)
13.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
14.
Zurück zum Zitat N. Kumar, K. Setshedi, M. Masukume, S.S. Ray, Facile scalable synthesis of graphene oxide and reduced graphene oxide: comparative investigation of different reduction methods. Carbon Lett. 32, 1031–1046 (2022)CrossRef N. Kumar, K. Setshedi, M. Masukume, S.S. Ray, Facile scalable synthesis of graphene oxide and reduced graphene oxide: comparative investigation of different reduction methods. Carbon Lett. 32, 1031–1046 (2022)CrossRef
15.
Zurück zum Zitat N. Kumar, R.S. Sinha, Synthesis and functionalization of nanomaterials, in Processing of Polymer-based Nanocomposites: Introduction. ed. by S. Sinha Ray (Springer International Publishing, Cham, 2018), pp.15–55CrossRef N. Kumar, R.S. Sinha, Synthesis and functionalization of nanomaterials, in Processing of Polymer-based Nanocomposites: Introduction. ed. by S. Sinha Ray (Springer International Publishing, Cham, 2018), pp.15–55CrossRef
16.
Zurück zum Zitat J. Fatima, A.N. Shah, M.B. Tahir, T. Mehmood, A.A. Shah, M. Tanveer, et al., Tunable 2D nanomaterials; their key roles and mechanisms in water purification and monitoring. Front. Environ. Sci. 10 (2022) J. Fatima, A.N. Shah, M.B. Tahir, T. Mehmood, A.A. Shah, M. Tanveer, et al., Tunable 2D nanomaterials; their key roles and mechanisms in water purification and monitoring. Front. Environ. Sci. 10 (2022)
17.
Zurück zum Zitat L. Cheng, G. Liu, J. Zhao, W. Jin, Two-dimensional-material membranes: manipulating the transport pathway for molecular separation. Acc. Mater. Res. 2, 114–128 (2021)CrossRef L. Cheng, G. Liu, J. Zhao, W. Jin, Two-dimensional-material membranes: manipulating the transport pathway for molecular separation. Acc. Mater. Res. 2, 114–128 (2021)CrossRef
18.
Zurück zum Zitat S. Liu, G. Liu, G. Chen, G. Liu, W. Jin, Scale-up fabrication of two-dimensional material membranes: challenges and opportunities. Curr. Opin. Chem. Eng. 39, 100892 (2023)CrossRef S. Liu, G. Liu, G. Chen, G. Liu, W. Jin, Scale-up fabrication of two-dimensional material membranes: challenges and opportunities. Curr. Opin. Chem. Eng. 39, 100892 (2023)CrossRef
19.
Zurück zum Zitat P. Liu, J. Hou, Y. Zhang, L. Li, X. Lu, Z. Tang, Two-dimensional material membranes for critical separations. Inorganic Chem. Front. 7, 2560–2581 (2020)CrossRef P. Liu, J. Hou, Y. Zhang, L. Li, X. Lu, Z. Tang, Two-dimensional material membranes for critical separations. Inorganic Chem. Front. 7, 2560–2581 (2020)CrossRef
20.
Zurück zum Zitat P. Zhang, J.-L. Gong, G.-M. Zeng, B. Song, W. Cao, H.-Y. Liu et al., Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. J. Membr. Sci. 574, 112–123 (2019)CrossRef P. Zhang, J.-L. Gong, G.-M. Zeng, B. Song, W. Cao, H.-Y. Liu et al., Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. J. Membr. Sci. 574, 112–123 (2019)CrossRef
21.
Zurück zum Zitat D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012)CrossRef D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012)CrossRef
22.
Zurück zum Zitat Q. Liu, G.-R. Xu, Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination 394, 162–175 (2016)CrossRef Q. Liu, G.-R. Xu, Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination 394, 162–175 (2016)CrossRef
23.
Zurück zum Zitat J. Wang, X. Gao, H. Yu, Q. Wang, Z. Ma, Z. Li et al., Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance. Sep. Purif. Technol. 215, 91–101 (2019)CrossRef J. Wang, X. Gao, H. Yu, Q. Wang, Z. Ma, Z. Li et al., Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance. Sep. Purif. Technol. 215, 91–101 (2019)CrossRef
24.
Zurück zum Zitat R. Gusain, N. Kumar, S.S. Ray, Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 405, 213111 (2020)CrossRef R. Gusain, N. Kumar, S.S. Ray, Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 405, 213111 (2020)CrossRef
25.
Zurück zum Zitat N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of graphene: a comprehensive review. FlatChem. 27, 100224 (2021)CrossRef N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of graphene: a comprehensive review. FlatChem. 27, 100224 (2021)CrossRef
26.
Zurück zum Zitat S. Verma, H.P. Mungse, N. Kumar, S. Choudhary, S.L. Jain, B. Sain et al., Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011)CrossRef S. Verma, H.P. Mungse, N. Kumar, S. Choudhary, S.L. Jain, B. Sain et al., Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011)CrossRef
27.
Zurück zum Zitat D. An, L. Yang, T.-J. Wang, B. Liu, Separation performance of graphene oxide membrane in aqueous solution. Ind. Eng. Chem. Res. 55, 4803–4810 (2016)CrossRef D. An, L. Yang, T.-J. Wang, B. Liu, Separation performance of graphene oxide membrane in aqueous solution. Ind. Eng. Chem. Res. 55, 4803–4810 (2016)CrossRef
28.
Zurück zum Zitat J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review. Anal. Bioanal. Chem. 406, 3957–3975 (2014)CrossRef J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review. Anal. Bioanal. Chem. 406, 3957–3975 (2014)CrossRef
29.
Zurück zum Zitat W. Zhang, H. Xu, F. Xie, X. Ma, B. Niu, M. Chen et al., General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 13, 471 (2022)CrossRef W. Zhang, H. Xu, F. Xie, X. Ma, B. Niu, M. Chen et al., General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 13, 471 (2022)CrossRef
30.
Zurück zum Zitat K. Almarzooqi, M. Ashrafi, T. Kanthan, A. Elkamel, M.A. Pope, Graphene oxide membranes for high salinity, produced water separation by pervaporation. Membranes 11, 475 (2021)CrossRef K. Almarzooqi, M. Ashrafi, T. Kanthan, A. Elkamel, M.A. Pope, Graphene oxide membranes for high salinity, produced water separation by pervaporation. Membranes 11, 475 (2021)CrossRef
31.
Zurück zum Zitat H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 484, 95–106 (2015)CrossRef H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 484, 95–106 (2015)CrossRef
32.
Zurück zum Zitat S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012)CrossRef S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012)CrossRef
33.
Zurück zum Zitat Y. Wei, Y. Zhang, X. Gao, Y. Yuan, B. Su, C. Gao, Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016)CrossRef Y. Wei, Y. Zhang, X. Gao, Y. Yuan, B. Su, C. Gao, Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016)CrossRef
34.
Zurück zum Zitat W. Zhang, M. Shi, Z. Heng, W. Zhang, B. Pan, Soft particles enable fast and selective water transport through graphene oxide membranes. Nano Lett. 20, 7327–7332 (2020)CrossRef W. Zhang, M. Shi, Z. Heng, W. Zhang, B. Pan, Soft particles enable fast and selective water transport through graphene oxide membranes. Nano Lett. 20, 7327–7332 (2020)CrossRef
35.
Zurück zum Zitat X. Yang, Y. Liu, S. Hu, F. Yu, Z. He, G. Zeng et al., Construction of Fe3O4@MXene composite nanofiltration membrane for heavy metal ions removal from wastewater. Polym. Adv. Technol. 32, 1000–1010 (2021)CrossRef X. Yang, Y. Liu, S. Hu, F. Yu, Z. He, G. Zeng et al., Construction of Fe3O4@MXene composite nanofiltration membrane for heavy metal ions removal from wastewater. Polym. Adv. Technol. 32, 1000–1010 (2021)CrossRef
36.
Zurück zum Zitat M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRef M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRef
37.
Zurück zum Zitat Y. Li, S. Yang, K. Zhang, B. Van der Bruggen, Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics. Desalination 454, 48–58 (2019)CrossRef Y. Li, S. Yang, K. Zhang, B. Van der Bruggen, Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics. Desalination 454, 48–58 (2019)CrossRef
38.
Zurück zum Zitat N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRef N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRef
39.
Zurück zum Zitat K. Malkappa, S.S. Ray, N. Kumar, Enhanced thermo-mechanical stiffness, thermal stability, and fire retardant performance of surface-modified 2D MoS2 nanosheet-reinforced polyurethane composites. Macromol. Mater. Eng. 304, 1800562 (2019)CrossRef K. Malkappa, S.S. Ray, N. Kumar, Enhanced thermo-mechanical stiffness, thermal stability, and fire retardant performance of surface-modified 2D MoS2 nanosheet-reinforced polyurethane composites. Macromol. Mater. Eng. 304, 1800562 (2019)CrossRef
40.
Zurück zum Zitat S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011)CrossRef S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011)CrossRef
41.
Zurück zum Zitat K. Ai, C. Ruan, M. Shen, L. Lu, MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Func. Mater. 26, 5542–5549 (2016)CrossRef K. Ai, C. Ruan, M. Shen, L. Lu, MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems. Adv. Func. Mater. 26, 5542–5549 (2016)CrossRef
42.
Zurück zum Zitat R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4, 4721–4734 (2021)CrossRef R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4, 4721–4734 (2021)CrossRef
43.
Zurück zum Zitat S. Pandey, E. Fosso-Kankeu, M.J. Spiro, F. Waanders, N. Kumar, S.S. Ray et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)CrossRef S. Pandey, E. Fosso-Kankeu, M.J. Spiro, F. Waanders, N. Kumar, S.S. Ray et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)CrossRef
44.
Zurück zum Zitat X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiom. 1, 33–44 (2015)CrossRef X. Li, H. Zhu, Two-dimensional MoS2: properties, preparation, and applications. J. Materiom. 1, 33–44 (2015)CrossRef
45.
Zurück zum Zitat Z. Wang, B. Mi, Environmental applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)CrossRef Z. Wang, B. Mi, Environmental applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)CrossRef
46.
Zurück zum Zitat M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015)CrossRef M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore. Nat. Commun. 6, 8616 (2015)CrossRef
47.
Zurück zum Zitat S. Yang, Q. Jiang, K. Zhang, Few-layers 2D O-MoS2 TFN nanofiltration membranes for future desalination. J. Membr. Sci. 604, 118052 (2020)CrossRef S. Yang, Q. Jiang, K. Zhang, Few-layers 2D O-MoS2 TFN nanofiltration membranes for future desalination. J. Membr. Sci. 604, 118052 (2020)CrossRef
48.
Zurück zum Zitat D. Chen, W. Ying, Y. Guo, Y. Ying, X. Peng, Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane. ACS Appl. Mater. Interfaces. 9, 44251–44257 (2017)CrossRef D. Chen, W. Ying, Y. Guo, Y. Ying, X. Peng, Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane. ACS Appl. Mater. Interfaces. 9, 44251–44257 (2017)CrossRef
49.
Zurück zum Zitat W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017)CrossRef W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 11, 11082–11090 (2017)CrossRef
50.
Zurück zum Zitat J. Azamat, A. Khataee, Improving the performance of heavy metal separation from water using MoS2 membrane: molecular dynamics simulation. Comput. Mater. Sci. 137, 201–207 (2017)CrossRef J. Azamat, A. Khataee, Improving the performance of heavy metal separation from water using MoS2 membrane: molecular dynamics simulation. Comput. Mater. Sci. 137, 201–207 (2017)CrossRef
51.
Zurück zum Zitat N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3, 9897–9909 (2020)CrossRef N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3, 9897–9909 (2020)CrossRef
52.
Zurück zum Zitat O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem. 29, 100281 (2021)CrossRef O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem. 29, 100281 (2021)CrossRef
53.
Zurück zum Zitat S.K. Hwang, S.-M. Kang, M. Rethinasabapathy, C. Roh, Y.S. Huh, MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020)CrossRef S.K. Hwang, S.-M. Kang, M. Rethinasabapathy, C. Roh, Y.S. Huh, MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020)CrossRef
54.
Zurück zum Zitat M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017)CrossRef M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017)CrossRef
55.
Zurück zum Zitat M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013) M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013)
56.
Zurück zum Zitat Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016)CrossRef Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016)CrossRef
57.
Zurück zum Zitat F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)CrossRef F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)CrossRef
58.
Zurück zum Zitat C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015)CrossRef C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6, 4026–4031 (2015)CrossRef
59.
Zurück zum Zitat J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019)CrossRef J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019)CrossRef
60.
Zurück zum Zitat I. Ihsanullah, M. Bilal, Potential of MXene-based membranes in water treatment and desalination: a critical review. Chemosphere 303, 135234 (2022)CrossRef I. Ihsanullah, M. Bilal, Potential of MXene-based membranes in water treatment and desalination: a critical review. Chemosphere 303, 135234 (2022)CrossRef
61.
Zurück zum Zitat Y. Sun, S. Li, Y. Zhuang, G. Liu, W. Xing, W. Jing, Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. J. Membr. Sci. 591, 117350 (2019)CrossRef Y. Sun, S. Li, Y. Zhuang, G. Liu, W. Xing, W. Jing, Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection. J. Membr. Sci. 591, 117350 (2019)CrossRef
62.
Zurück zum Zitat M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)CrossRef M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman et al., Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012)CrossRef
63.
Zurück zum Zitat J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.-Å. Näslund et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014)CrossRef J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.-Å. Näslund et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014)CrossRef
64.
Zurück zum Zitat M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014)CrossRef M. Ghidiu, M.R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014)CrossRef
65.
Zurück zum Zitat Y.A.J. Al-Hamadani, B.-M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyder, M. Jang et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020)CrossRef Y.A.J. Al-Hamadani, B.-M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyder, M. Jang et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020)CrossRef
66.
Zurück zum Zitat K. Meidani, Z. Cao, F.A. Barati, Titanium carbide MXene for water desalination: a molecular dynamics study. ACS Appl. Nano Mater. 4, 6145–6151 (2021)CrossRef K. Meidani, Z. Cao, F.A. Barati, Titanium carbide MXene for water desalination: a molecular dynamics study. ACS Appl. Nano Mater. 4, 6145–6151 (2021)CrossRef
67.
Zurück zum Zitat F.H. Memon, F. Rehman, J. Lee, F. Soomro, M. Iqbal, S.M. Khan, et al., Transition metal dichalcogenide-based membranes for water desalination, gas separation, and energy storage. Separat. Purific. Rev. 1–15 (2022) F.H. Memon, F. Rehman, J. Lee, F. Soomro, M. Iqbal, S.M. Khan, et al., Transition metal dichalcogenide-based membranes for water desalination, gas separation, and energy storage. Separat. Purific. Rev. 1–15 (2022)
68.
Zurück zum Zitat X. Wang, L. Chen, L. Wang, Q. Fan, D. Pan, J. Li et al., Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 62, 933–967 (2019)CrossRef X. Wang, L. Chen, L. Wang, Q. Fan, D. Pan, J. Li et al., Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 62, 933–967 (2019)CrossRef
69.
Zurück zum Zitat K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017)CrossRef K. Maleski, V.N. Mochalin, Y. Gogotsi, Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017)CrossRef
70.
Zurück zum Zitat K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen, L.C. Brinson, Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5, 6601–6609 (2011)CrossRef K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen, L.C. Brinson, Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5, 6601–6609 (2011)CrossRef
71.
Zurück zum Zitat K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi et al., Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9, 44687–44694 (2017)CrossRef K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi et al., Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9, 44687–44694 (2017)CrossRef
72.
Zurück zum Zitat A. Aher, Y. Cai, M. Majumder, D. Bhattacharyya, Synthesis of graphene oxide membranes and their behavior in water and isopropanol. Carbon 116, 145–153 (2017)CrossRef A. Aher, Y. Cai, M. Majumder, D. Bhattacharyya, Synthesis of graphene oxide membranes and their behavior in water and isopropanol. Carbon 116, 145–153 (2017)CrossRef
73.
Zurück zum Zitat S. Wang, F. Wang, Y. Jin, X. Meng, B. Meng, N. Yang et al., Removal of heavy metal cations and co-existing anions in simulated wastewater by two separated hydroxylated MXene membranes under an external voltage. J. Membr. Sci. 638, 119697 (2021)CrossRef S. Wang, F. Wang, Y. Jin, X. Meng, B. Meng, N. Yang et al., Removal of heavy metal cations and co-existing anions in simulated wastewater by two separated hydroxylated MXene membranes under an external voltage. J. Membr. Sci. 638, 119697 (2021)CrossRef
74.
Zurück zum Zitat Z. Huang, J. Liu, Y. Liu, Y. Xu, R. Li, H. Hong et al., Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. J. Membr. Sci. 623, 119080 (2021)CrossRef Z. Huang, J. Liu, Y. Liu, Y. Xu, R. Li, H. Hong et al., Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. J. Membr. Sci. 623, 119080 (2021)CrossRef
75.
Zurück zum Zitat B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRef B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017)CrossRef
76.
Zurück zum Zitat J. Yin, F. Zhan, T. Jiao, H. Deng, G. Zou, Z. Bai et al., Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chin. Chem. Lett. 31, 992–995 (2020)CrossRef J. Yin, F. Zhan, T. Jiao, H. Deng, G. Zou, Z. Bai et al., Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chin. Chem. Lett. 31, 992–995 (2020)CrossRef
77.
Zurück zum Zitat F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1, 71–76 (2014)CrossRef F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 1, 71–76 (2014)CrossRef
78.
Zurück zum Zitat W. Choi, J. Choi, J. Bang, J.-H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces 5, 12510–12519 (2013)CrossRef W. Choi, J. Choi, J. Bang, J.-H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces 5, 12510–12519 (2013)CrossRef
79.
Zurück zum Zitat B.-M. Jun, C.M. Park, J. Heo, Y. Yoon, Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manage. 256, 109940 (2020)CrossRef B.-M. Jun, C.M. Park, J. Heo, Y. Yoon, Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manage. 256, 109940 (2020)CrossRef
80.
Zurück zum Zitat G. Bjørklund, Y. Semenova, L. Pivina, M. Dadar, M.M. Rahman, J. Aaseth et al., Uranium in drinking water: a public health threat. Arch. Toxicol. 94, 1551–1560 (2020)CrossRef G. Bjørklund, Y. Semenova, L. Pivina, M. Dadar, M.M. Rahman, J. Aaseth et al., Uranium in drinking water: a public health threat. Arch. Toxicol. 94, 1551–1560 (2020)CrossRef
81.
Zurück zum Zitat L. Wang, W. Tao, L. Yuan, Z. Liu, Q. Huang, Z. Chai et al., Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53, 12084–12087 (2017)CrossRef L. Wang, W. Tao, L. Yuan, Z. Liu, Q. Huang, Z. Chai et al., Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53, 12084–12087 (2017)CrossRef
82.
Zurück zum Zitat S. Yu, H. Tang, D. Zhang, S. Wang, M. Qiu, G. Song et al., MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 811, 152280 (2022)CrossRef S. Yu, H. Tang, D. Zhang, S. Wang, M. Qiu, G. Song et al., MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 811, 152280 (2022)CrossRef
83.
Zurück zum Zitat M. Jeon, B.-M. Jun, S. Kim, M. Jang, C.M. Park, S.A. Snyder et al., A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 261, 127781 (2020)CrossRef M. Jeon, B.-M. Jun, S. Kim, M. Jang, C.M. Park, S.A. Snyder et al., A review on MXene-based nanomaterials as adsorbents in aqueous solution. Chemosphere 261, 127781 (2020)CrossRef
84.
Zurück zum Zitat R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018)CrossRef R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, K.A. Mahmoud, Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 6, 3522–3533 (2018)CrossRef
85.
Zurück zum Zitat Q. Shafiq, S.M. Husnain, F. Shahzad, M. Taqi Mehran, S.A. Raza Kazmi, S. Mujtaba-ul-Hassan et al., Rational design of MXene coated polyurethane foam for the removal of Pb2+. Mater. Lett. 304, 130600 (2021)CrossRef Q. Shafiq, S.M. Husnain, F. Shahzad, M. Taqi Mehran, S.A. Raza Kazmi, S. Mujtaba-ul-Hassan et al., Rational design of MXene coated polyurethane foam for the removal of Pb2+. Mater. Lett. 304, 130600 (2021)CrossRef
86.
Zurück zum Zitat G.-R. Xu, J.-M. Xu, H.-C. Su, X.-Y. Liu, L. Lu, H.-L. Zhao et al., Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: latest developments and future directions. Desalination 451, 18–34 (2019)CrossRef G.-R. Xu, J.-M. Xu, H.-C. Su, X.-Y. Liu, L. Lu, H.-L. Zhao et al., Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: latest developments and future directions. Desalination 451, 18–34 (2019)CrossRef
87.
Zurück zum Zitat K. Qu, K. Huang, Z. Xu, Recent progress in the design and fabrication of MXene-based membranes. Front. Chem. Sci. Eng. 15, 820–836 (2021)CrossRef K. Qu, K. Huang, Z. Xu, Recent progress in the design and fabrication of MXene-based membranes. Front. Chem. Sci. Eng. 15, 820–836 (2021)CrossRef
Metadaten
Titel
Fabrication of Advanced 2D Nanomaterials Membranes for Desalination and Wastewater Treatment
verfasst von
Koena Selatile
Suprakas Sinha Ray
Neeraj Kumar
Vincent Ojijo
Rotimi Emmanuel Sadiku
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.