Skip to main content
Erschienen in: Journal of Materials Science 23/2020

04.05.2020 | Energy materials

Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage

verfasst von: Rui S. Costa, Alexandra Guedes, André M. Pereira, Clara Pereira

Erschienen in: Journal of Materials Science | Ausgabe 23/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Textile supercapacitors (TESCs) are an emerging energy storage solution to power smart gadgets integrated on clothes. Herein, efficient solid-state TESCs with different active areas (2–8 cm2) were produced based on cotton fabrics coated with industrial grade multi-walled carbon nanotubes (MWCNTs) as electrodes and a safe polyelectrolyte. The textile electrodes were fabricated by an optimized eco-friendly scalable dip-pad-dry process. The lowest electrical resistance (2.62 Ω cm−2) and most uniform coating of the electrodes were achieved using 10 mg mL−1 CNTs dispersion and 8 dip-pad-dry steps. The TESCs exhibited a specific capacitance of 8.01 F g−1 (9.18 F cm−2) and high cyclability (5000 cycles). The energy and power densities were tuned by changing the electrode area: the largest TESC presented the highest energy density of 6.30 Wh kg−1, which was 14× higher than those of other EDLC-type carbon-based TESCs reported in the literature; the smallest TESC presented the highest power density of 2.72 kW kg−1, being 49× higher than the values reported for comparable systems. Finally, a sensor was powered for 47 min by coupling two TESCs in series (14 cm2). This work demonstrated the ability to produce efficient TESCs using industrial grade MWCNTs by processes implemented in the Textile Industry, boosting technological transfer for high-tech applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Li C, Islam MM, Moore J et al (2016) Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat Commun 7:13319–13329CrossRef Li C, Islam MM, Moore J et al (2016) Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat Commun 7:13319–13329CrossRef
2.
Zurück zum Zitat Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2:10776–10787CrossRef Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2:10776–10787CrossRef
3.
Zurück zum Zitat Huang Q, Wang D, Zheng Z (2016) Textile-based electrochemical energy storage devices. Adv Energy Mater 6:1600783–1600811CrossRef Huang Q, Wang D, Zheng Z (2016) Textile-based electrochemical energy storage devices. Adv Energy Mater 6:1600783–1600811CrossRef
4.
Zurück zum Zitat Gulzar U, Goriparti S, Miele E et al (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4:16771–16800CrossRef Gulzar U, Goriparti S, Miele E et al (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4:16771–16800CrossRef
5.
Zurück zum Zitat Wu Z, Li L, Yan J, Zhang X (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4:1600382–1600430CrossRef Wu Z, Li L, Yan J, Zhang X (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4:1600382–1600430CrossRef
6.
Zurück zum Zitat Bao L, Li X (2012) Towards textile energy storage from cotton T-Shirts. Adv Mater 24:3246–3252CrossRef Bao L, Li X (2012) Towards textile energy storage from cotton T-Shirts. Adv Mater 24:3246–3252CrossRef
7.
Zurück zum Zitat Jiang Y, Ling X, Jiao Z et al (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253CrossRef Jiang Y, Ling X, Jiao Z et al (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253CrossRef
8.
Zurück zum Zitat Yuksel R, Unalan HE (2015) Textile supercapacitors-based on MnO2 /SWNT/conducting polymer ternary composites. Int J Energy Res 39:2042–2052CrossRef Yuksel R, Unalan HE (2015) Textile supercapacitors-based on MnO2 /SWNT/conducting polymer ternary composites. Int J Energy Res 39:2042–2052CrossRef
9.
Zurück zum Zitat Dong L, Liang G, Xu C et al (2017) Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34:242–248CrossRef Dong L, Liang G, Xu C et al (2017) Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 34:242–248CrossRef
10.
Zurück zum Zitat Liu C, Cai Z, Zhao Y et al (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRef Liu C, Cai Z, Zhao Y et al (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRef
11.
Zurück zum Zitat Zhou M, Zhang H, Qiao Y et al (2018) A flexible sandwich-structured supercapacitor with poly(vinyl alcohol)/H3PO4-soaked cotton fabric as solid electrolyte, separator and supporting layer. Cellulose 25:3459–3469CrossRef Zhou M, Zhang H, Qiao Y et al (2018) A flexible sandwich-structured supercapacitor with poly(vinyl alcohol)/H3PO4-soaked cotton fabric as solid electrolyte, separator and supporting layer. Cellulose 25:3459–3469CrossRef
12.
Zurück zum Zitat Ye X, Zhou Q, Jia C et al (2016) A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim Acta 206:155–164CrossRef Ye X, Zhou Q, Jia C et al (2016) A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim Acta 206:155–164CrossRef
13.
Zurück zum Zitat Huang G, Hou C, Shao Y et al (2015) High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy 12:26–32CrossRef Huang G, Hou C, Shao Y et al (2015) High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy 12:26–32CrossRef
14.
Zurück zum Zitat Zhou Q, Jia C, Ye X et al (2016) A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. J Power Sources 327:365–373CrossRef Zhou Q, Jia C, Ye X et al (2016) A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. J Power Sources 327:365–373CrossRef
15.
Zurück zum Zitat Zhang X, Lai Y, Ge M et al (2015) Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. J Mater Chem A 3:12761–12768CrossRef Zhang X, Lai Y, Ge M et al (2015) Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. J Mater Chem A 3:12761–12768CrossRef
16.
Zurück zum Zitat Sun J, Huang Y, Fu C et al (2016) High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237CrossRef Sun J, Huang Y, Fu C et al (2016) High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237CrossRef
17.
Zurück zum Zitat Zhang C, Chen Z, Rao W et al (2019) A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns. Cellulose 26:1169–1181CrossRef Zhang C, Chen Z, Rao W et al (2019) A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns. Cellulose 26:1169–1181CrossRef
18.
Zurück zum Zitat Singha K (2012) A review on coating and lamination in textiles: processes and applications. Am J Polym Sci 2:39–49CrossRef Singha K (2012) A review on coating and lamination in textiles: processes and applications. Am J Polym Sci 2:39–49CrossRef
19.
Zurück zum Zitat Schindler WD, Hauser PJ (2004) Chemical finishing of textiles, 1st edn. Woodhead Publishing Ltd, Cambridge, EnglandCrossRef Schindler WD, Hauser PJ (2004) Chemical finishing of textiles, 1st edn. Woodhead Publishing Ltd, Cambridge, EnglandCrossRef
20.
Zurück zum Zitat Liu W, Song M-S, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436–1603470CrossRef Liu W, Song M-S, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436–1603470CrossRef
21.
Zurück zum Zitat Hu L, Pasta M, La Mantia F et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRef Hu L, Pasta M, La Mantia F et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRef
22.
Zurück zum Zitat Chee WK, Lim HN, Zainal Z et al (2016) Flexible graphene-based supercapacitors: a review. J Phys Chem C 120:4153–4172CrossRef Chee WK, Lim HN, Zainal Z et al (2016) Flexible graphene-based supercapacitors: a review. J Phys Chem C 120:4153–4172CrossRef
23.
Zurück zum Zitat Sun H, Xie S, Li Y et al (2016) Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater 28:8431–8438CrossRef Sun H, Xie S, Li Y et al (2016) Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater 28:8431–8438CrossRef
24.
Zurück zum Zitat Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRef Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855CrossRef
25.
Zurück zum Zitat Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
26.
Zurück zum Zitat Zhang C, Tian J, Rao W et al (2019) Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose 26:3387–3399CrossRef Zhang C, Tian J, Rao W et al (2019) Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose 26:3387–3399CrossRef
27.
Zurück zum Zitat Bo Y, Zhao Y, Cai Z et al (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25:4079–4091CrossRef Bo Y, Zhao Y, Cai Z et al (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25:4079–4091CrossRef
28.
Zurück zum Zitat Staaf LGH, Lundgren P, Enoksson P (2014) Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 9:128–141CrossRef Staaf LGH, Lundgren P, Enoksson P (2014) Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 9:128–141CrossRef
29.
Zurück zum Zitat Cheng Y, Liu J (2013) Carbon nanomaterials for flexible energy storage. Mater Res Lett 1:175–192CrossRef Cheng Y, Liu J (2013) Carbon nanomaterials for flexible energy storage. Mater Res Lett 1:175–192CrossRef
30.
Zurück zum Zitat Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sour 157:11–27CrossRef Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sour 157:11–27CrossRef
31.
Zurück zum Zitat Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
32.
Zurück zum Zitat Zhang M, Annamalai KP, Liu L et al (2016) A mini review over the applications of nano-carbons and their composites in supercapacitors. Recent Innov Chem Eng 9:4–19 Zhang M, Annamalai KP, Liu L et al (2016) A mini review over the applications of nano-carbons and their composites in supercapacitors. Recent Innov Chem Eng 9:4–19
33.
Zurück zum Zitat Hao T, Sun J, Wang W, Yu D (2018) MWCNTs-COOH/cotton flexible supercapacitor electrode prepared by improvement one-time dipping and carbonization method. Cellulose 25:4031–4041CrossRef Hao T, Sun J, Wang W, Yu D (2018) MWCNTs-COOH/cotton flexible supercapacitor electrode prepared by improvement one-time dipping and carbonization method. Cellulose 25:4031–4041CrossRef
34.
Zurück zum Zitat Pasta M, La Mantia F, Hu L et al (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458CrossRef Pasta M, La Mantia F, Hu L et al (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458CrossRef
35.
Zurück zum Zitat Charitidis C, Georgiou P, Koklioti M et al (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11–30 Charitidis C, Georgiou P, Koklioti M et al (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11–30
36.
Zurück zum Zitat Xu J, Wu H, Xu C et al (2013) Structural engineering for high energy and voltage output supercapacitors. Chem A Eur J 19:6451–6458CrossRef Xu J, Wu H, Xu C et al (2013) Structural engineering for high energy and voltage output supercapacitors. Chem A Eur J 19:6451–6458CrossRef
37.
Zurück zum Zitat Yu G, Hu L, Vosgueritchian M et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef Yu G, Hu L, Vosgueritchian M et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef
38.
Zurück zum Zitat Fang L, Zhang X, Sun D (2013) Chemical modification of cotton fabrics for improving utilization of reactive dyes. Carbohydr Polym 91:363–369CrossRef Fang L, Zhang X, Sun D (2013) Chemical modification of cotton fabrics for improving utilization of reactive dyes. Carbohydr Polym 91:363–369CrossRef
39.
Zurück zum Zitat Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393CrossRef
40.
Zurück zum Zitat Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267CrossRef Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267CrossRef
41.
Zurück zum Zitat Liang Y, Weng W, Yang J et al (2017) Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility. RSC Adv 7:48934–48941CrossRef Liang Y, Weng W, Yang J et al (2017) Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility. RSC Adv 7:48934–48941CrossRef
42.
Zurück zum Zitat Lehman JH, Terrones M, Mansfield E et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602CrossRef Lehman JH, Terrones M, Mansfield E et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602CrossRef
43.
Zurück zum Zitat Rebelo SLH, Guedes A, Szefczyk ME et al (2016) Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys Chem Chem Phys 18:12784–12796CrossRef Rebelo SLH, Guedes A, Szefczyk ME et al (2016) Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys Chem Chem Phys 18:12784–12796CrossRef
44.
Zurück zum Zitat Qi H, Liu J, Mäder E (2014) Smart cellulose fibers coated with carbon nanotube networks. Fibers 2:295–307CrossRef Qi H, Liu J, Mäder E (2014) Smart cellulose fibers coated with carbon nanotube networks. Fibers 2:295–307CrossRef
45.
Zurück zum Zitat Cabrales L, Abidi N, Manciu F (2014) Characterization of developing cotton fibers by confocal Raman microscopy. Fibers 2:285–294CrossRef Cabrales L, Abidi N, Manciu F (2014) Characterization of developing cotton fibers by confocal Raman microscopy. Fibers 2:285–294CrossRef
46.
Zurück zum Zitat Adebajo MO, Frost RL, Kloprogge JT, Kokot S (2006) Raman spectroscopic investigation of acetylation of raw cotton. Spectrochim Acta - Part A Mol Biomol Spectrosc 64:448–453CrossRef Adebajo MO, Frost RL, Kloprogge JT, Kokot S (2006) Raman spectroscopic investigation of acetylation of raw cotton. Spectrochim Acta - Part A Mol Biomol Spectrosc 64:448–453CrossRef
47.
Zurück zum Zitat Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5:1401401–1401420CrossRef Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5:1401401–1401420CrossRef
48.
Zurück zum Zitat Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5:818–841CrossRef Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5:818–841CrossRef
49.
Zurück zum Zitat Mei BA, Munteshari O, Lau J et al (2018) Physical interpretations of nyquist plots for EDLC electrodes and devices. J Phys Chem C 122:194–206CrossRef Mei BA, Munteshari O, Lau J et al (2018) Physical interpretations of nyquist plots for EDLC electrodes and devices. J Phys Chem C 122:194–206CrossRef
50.
Zurück zum Zitat Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J Electrochem Soc 150:A292–A300CrossRef Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J Electrochem Soc 150:A292–A300CrossRef
51.
Zurück zum Zitat Ujjain SK, Bhatia R, Ahuja P, Attri P (2015) Highly conductive aromatic functionalized multi-walled carbon nanotube for inkjet printable high performance supercapacitor electrodes. PLoS ONE 10:e0131475–e0131487CrossRef Ujjain SK, Bhatia R, Ahuja P, Attri P (2015) Highly conductive aromatic functionalized multi-walled carbon nanotube for inkjet printable high performance supercapacitor electrodes. PLoS ONE 10:e0131475–e0131487CrossRef
52.
Zurück zum Zitat Kumar N, Ginting RT, Kang J-W (2018) Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochim Acta 270:37–47CrossRef Kumar N, Ginting RT, Kang J-W (2018) Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochim Acta 270:37–47CrossRef
53.
Zurück zum Zitat Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848CrossRef Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848CrossRef
54.
Zurück zum Zitat He M, Fic K, Frackowiak E et al (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9:623–633CrossRef He M, Fic K, Frackowiak E et al (2016) Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ Sci 9:623–633CrossRef
55.
Zurück zum Zitat Barzegar F, Dangbegnon JK, Bello A et al (2015) Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Adv 5:097171–097180CrossRef Barzegar F, Dangbegnon JK, Bello A et al (2015) Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Adv 5:097171–097180CrossRef
56.
Zurück zum Zitat Gao Z, Song N, Zhang Y, Li X (2015) Cotton textile enabled, all-solid-state flexible supercapacitors. RSC Adv 5:15438–15447CrossRef Gao Z, Song N, Zhang Y, Li X (2015) Cotton textile enabled, all-solid-state flexible supercapacitors. RSC Adv 5:15438–15447CrossRef
57.
Zurück zum Zitat Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647–12660CrossRef Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647–12660CrossRef
58.
Zurück zum Zitat Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRef Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251CrossRef
59.
Zurück zum Zitat Jost K, Perez CR, McDonough JK et al (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067CrossRef Jost K, Perez CR, McDonough JK et al (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067CrossRef
60.
Zurück zum Zitat González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: Technologies and materials. Renew Sustain Energy Rev 58:1189–1206CrossRef González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: Technologies and materials. Renew Sustain Energy Rev 58:1189–1206CrossRef
61.
Zurück zum Zitat Yun TG, Oh M, Hu L et al (2013) Enhancement of electrochemical performance of textile based supercapacitor using mechanical pre-straining. J Power Sour 244:783–791CrossRef Yun TG, Oh M, Hu L et al (2013) Enhancement of electrochemical performance of textile based supercapacitor using mechanical pre-straining. J Power Sour 244:783–791CrossRef
62.
Zurück zum Zitat Chen P, Chen H, Qiu J, Zhou C (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3:594–603CrossRef Chen P, Chen H, Qiu J, Zhou C (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3:594–603CrossRef
63.
Zurück zum Zitat Liu W, Yan X, Lang J et al (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253CrossRef Liu W, Yan X, Lang J et al (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253CrossRef
64.
Zurück zum Zitat Stepniak I, Ciszewski A (2011) Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte. Electrochim Acta 56:2477–2482CrossRef Stepniak I, Ciszewski A (2011) Electrochemical characteristics of a new electric double layer capacitor with acidic polymer hydrogel electrolyte. Electrochim Acta 56:2477–2482CrossRef
65.
Zurück zum Zitat Wang Y, Tang S, Vongehr S et al (2016) High-performance flexible solid-state carbon cloth supercapacitors based on highly processible N-graphene doped polyacrylic acid/polyaniline composites. Sci Rep 6:12883–12893CrossRef Wang Y, Tang S, Vongehr S et al (2016) High-performance flexible solid-state carbon cloth supercapacitors based on highly processible N-graphene doped polyacrylic acid/polyaniline composites. Sci Rep 6:12883–12893CrossRef
66.
Zurück zum Zitat Ko W-Y, Chen Y-F, Lu K-M, Lin K-J (2016) Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors. Sci Rep 6:18887–18894CrossRef Ko W-Y, Chen Y-F, Lu K-M, Lin K-J (2016) Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors. Sci Rep 6:18887–18894CrossRef
67.
Zurück zum Zitat Yuan L, Lu X-H, Xiao X et al (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661CrossRef Yuan L, Lu X-H, Xiao X et al (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661CrossRef
68.
Zurück zum Zitat Li L, Zhong Q, Kim ND et al (2016) Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon 105:260–267CrossRef Li L, Zhong Q, Kim ND et al (2016) Nitrogen-doped carbonized cotton for highly flexible supercapacitors. Carbon 105:260–267CrossRef
69.
Zurück zum Zitat Wang YS, Li SM, Hsiao ST et al (2014) Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon 73:87–98CrossRef Wang YS, Li SM, Hsiao ST et al (2014) Integration of tailored reduced graphene oxide nanosheets and electrospun polyamide-66 nanofabrics for a flexible supercapacitor with high-volume- and high-area-specific capacitance. Carbon 73:87–98CrossRef
70.
Zurück zum Zitat Gao Z, Bumgardner C, Song N et al (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586–11597CrossRef Gao Z, Bumgardner C, Song N et al (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586–11597CrossRef
71.
Zurück zum Zitat Huang S, Chen P, Lin W et al (2016) Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv 6:13359–13364CrossRef Huang S, Chen P, Lin W et al (2016) Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv 6:13359–13364CrossRef
72.
Zurück zum Zitat Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ 3:424–473CrossRef Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev Energy Environ 3:424–473CrossRef
Metadaten
Titel
Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage
verfasst von
Rui S. Costa
Alexandra Guedes
André M. Pereira
Clara Pereira
Publikationsdatum
04.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04709-0

Weitere Artikel der Ausgabe 23/2020

Journal of Materials Science 23/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.