Skip to main content
Erschienen in: Cellulose 8/2021

26.03.2021 | Original Research

Fabrication of glycerophosphate-based nanochitin hydrogels for prolonged release under in vitro physiological conditions

verfasst von: Liang Liu, Huazhong Ma, Juan Yu, Yimin Fan

Erschienen in: Cellulose | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Partially deacetylated nanochitin (NCh)/glycerophosphate (GP)-based composite hydrogels were prepared for the prolonged release of microemulsions (ME) under in vitro physiological conditions. Thermo-sensitive gelation behavior not be observed for the NCh/GP composite dispersion; however, the addition of glycerophosphate also resulted in the loss of viscoelasticity due to the sodium component in the β-glycerol phosphate disodium salt pentahydrate. To prepare enhanced NCh/GP composite hydrogels, a gas phase coagulation bath was further applied to introduce physical crosslinking domains in hydrogels. The storage modulus reached approximately 1600 Pa, as 20 μL GP was composited with NCh dispersion (0.6 wt %, 2 mL), and a higher GP dosage also led to decreased mechanical strength of composite hydrogels. Because of the relatively stable inter-structure, less than 40% of ME could be released from the NCh/GP composite hydrogel. To promote the release performance of NCh/GP-based composite hydrogels, chitosan and glycine were added. As high as 81% ME could be released from composite hydrogels at 40 °C in 50 h, as the mass ratio between NCh and chitosan was 2:1, while as high as 82% ME could be released at 40 °C in 50 h, as the mass ratio between NCh and glycine was 1:1. Moreover, obvious thermo-responsive release could be observed for the NCh(1)/Gly(1)/GP sample.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bagal-Kestwal DR, Chiang BH (2019) Exploration of chitinous scaffold-based interfaces for glucose sensing assemblies. Polymers 11(12):1958CrossRef Bagal-Kestwal DR, Chiang BH (2019) Exploration of chitinous scaffold-based interfaces for glucose sensing assemblies. Polymers 11(12):1958CrossRef
Zurück zum Zitat Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohyd Polym 91(1):7–13CrossRef Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohyd Polym 91(1):7–13CrossRef
Zurück zum Zitat Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96(2):285–300CrossRef Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96(2):285–300CrossRef
Zurück zum Zitat Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohyd Polym 83(1):171–178CrossRef Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohyd Polym 83(1):171–178CrossRef
Zurück zum Zitat Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRef Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRef
Zurück zum Zitat Ding F, Shi X, Jiang Z, Liu L, Cai J, Li Z, Du Y (2013) Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J Mater Chem B 1(12):1729–1737CrossRef Ding F, Shi X, Jiang Z, Liu L, Cai J, Li Z, Du Y (2013) Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J Mater Chem B 1(12):1729–1737CrossRef
Zurück zum Zitat Ding F, Tang Z, Ding B, Xiong Y, Cai J, Deng H, Shi X (2014) Tunable thermosensitive behavior of multiple responsive chitin. J Mater Chem B 2(20):3050–3056CrossRef Ding F, Tang Z, Ding B, Xiong Y, Cai J, Deng H, Shi X (2014) Tunable thermosensitive behavior of multiple responsive chitin. J Mater Chem B 2(20):3050–3056CrossRef
Zurück zum Zitat Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohyd Polym 79(4):1046–1051CrossRef Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohyd Polym 79(4):1046–1051CrossRef
Zurück zum Zitat Ganji F, Abdekhodaie MJ, Ramazani A (2007) Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol 42(1):47–53CrossRef Ganji F, Abdekhodaie MJ, Ramazani A (2007) Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol 42(1):47–53CrossRef
Zurück zum Zitat Gopi S, Pius A, Thomas S (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Process Eng 14:1–8CrossRef Gopi S, Pius A, Thomas S (2016) Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J Water Process Eng 14:1–8CrossRef
Zurück zum Zitat Goycoolea FM, Fernández-Valle ME, Aranaz I, Heras A (2011) pH-and Temperature-Sensitive Chitosan Hydrogels: Swelling and MRI Studies. Macromol Chem Phys 212(9):887–895CrossRef Goycoolea FM, Fernández-Valle ME, Aranaz I, Heras A (2011) pH-and Temperature-Sensitive Chitosan Hydrogels: Swelling and MRI Studies. Macromol Chem Phys 212(9):887–895CrossRef
Zurück zum Zitat Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318CrossRef Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318CrossRef
Zurück zum Zitat Josef E, Barat K, Barsht I, Zilberman M, Bianco-Peled H (2013) Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater 9(11):8815–8822CrossRef Josef E, Barat K, Barsht I, Zilberman M, Bianco-Peled H (2013) Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater 9(11):8815–8822CrossRef
Zurück zum Zitat Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y (2010) A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31(14):4157–4166CrossRef Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y (2010) A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 31(14):4157–4166CrossRef
Zurück zum Zitat Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRef Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRef
Zurück zum Zitat Liu L, Lv H, Jiang J, Zheng K, Ye W, Wang Z, Fan Y (2015) Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase. RSC advances 5(113):93331–93336CrossRef Liu L, Lv H, Jiang J, Zheng K, Ye W, Wang Z, Fan Y (2015) Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase. RSC advances 5(113):93331–93336CrossRef
Zurück zum Zitat Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromol 17(11):3773–3781CrossRef Liu L, Wang R, Yu J, Jiang J, Zheng K, Hu L, Fan Y (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromol 17(11):3773–3781CrossRef
Zurück zum Zitat Liu L, Borghei M, Wang Z, Xu J, Fan Y, Rojas OJ (2018) Salt-induced colloidal destabilization, separation, drying, and redispersion in aqueous phase of cationic and anionic nanochitins. J Agric Food Chem 66(35):9189–9198CrossRef Liu L, Borghei M, Wang Z, Xu J, Fan Y, Rojas OJ (2018) Salt-induced colloidal destabilization, separation, drying, and redispersion in aqueous phase of cationic and anionic nanochitins. J Agric Food Chem 66(35):9189–9198CrossRef
Zurück zum Zitat Liu S, Li J, Zhang S, Zhang X, Ma J, Wang N, Chen S (2019b) Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Appl Bio Mater 3(2):848–858CrossRef Liu S, Li J, Zhang S, Zhang X, Ma J, Wang N, Chen S (2019b) Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Appl Bio Mater 3(2):848–858CrossRef
Zurück zum Zitat Liu L, Bai L, Tripathi A, Yu J, Wang Z, Borghei M, Rojas OJ (2019a) High Axial Ratio Nanochitins for Ultrastrong and Shape-Recoverable Hydrogels and Cryogels via Ice Templating. ACS Nano 13(3):2927–2935CrossRef Liu L, Bai L, Tripathi A, Yu J, Wang Z, Borghei M, Rojas OJ (2019a) High Axial Ratio Nanochitins for Ultrastrong and Shape-Recoverable Hydrogels and Cryogels via Ice Templating. ACS Nano 13(3):2927–2935CrossRef
Zurück zum Zitat Ma H, Xu J, Yu J, Liu L, Fan Y (2020) Visualization and improvement of the physical gelation process during gas phase coagulation through acid–base indicator staining, monitoring and optimization. Cellulose 27(12):6871–6886CrossRef Ma H, Xu J, Yu J, Liu L, Fan Y (2020) Visualization and improvement of the physical gelation process during gas phase coagulation through acid–base indicator staining, monitoring and optimization. Cellulose 27(12):6871–6886CrossRef
Zurück zum Zitat Marsano E, Bianchi E, Vicini S, Compagnino L, Sionkowska A, Skopińska J, Wiśniewski M (2005) Stimuli responsive gels based on interpenetrating network of chitosan and poly (vinylpyrrolidone). Polymer 46(5):1595–1600CrossRef Marsano E, Bianchi E, Vicini S, Compagnino L, Sionkowska A, Skopińska J, Wiśniewski M (2005) Stimuli responsive gels based on interpenetrating network of chitosan and poly (vinylpyrrolidone). Polymer 46(5):1595–1600CrossRef
Zurück zum Zitat Mirani B, Pagan E, Currie B, Siddiqui MA, Hosseinzadeh R, Mostafalu P, Akbari M (2017) An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv Healthcare Mater 6(19):1700718CrossRef Mirani B, Pagan E, Currie B, Siddiqui MA, Hosseinzadeh R, Mostafalu P, Akbari M (2017) An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv Healthcare Mater 6(19):1700718CrossRef
Zurück zum Zitat Nata IF, Wang SSS, Wu TM, Lee CK (2012) β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohyd Polym 90(4):1509–1514CrossRef Nata IF, Wang SSS, Wu TM, Lee CK (2012) β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohyd Polym 90(4):1509–1514CrossRef
Zurück zum Zitat Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6(12):991–1008CrossRef Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6(12):991–1008CrossRef
Zurück zum Zitat Rasool A, Ata S, Islam A (2019) Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohyd Polym 203:423–429CrossRef Rasool A, Ata S, Islam A (2019) Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohyd Polym 203:423–429CrossRef
Zurück zum Zitat Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRef
Zurück zum Zitat Salaberria AM, Labidi J, Fernandes SC (2015) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515CrossRef Salaberria AM, Labidi J, Fernandes SC (2015) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515CrossRef
Zurück zum Zitat Sá-Lima H, Caridade SG, Mano JF, Reis RL (2010) Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter 6(20):5184–5195CrossRef Sá-Lima H, Caridade SG, Mano JF, Reis RL (2010) Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter 6(20):5184–5195CrossRef
Zurück zum Zitat Skwarczynska A, Kaminska M, Owczarz P, Bartoszek N, Walkowiak B, Modrzejewska Z (2018) The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with β-glycerophosphate disodium. J Appl Polym Sci 135(27):46459CrossRef Skwarczynska A, Kaminska M, Owczarz P, Bartoszek N, Walkowiak B, Modrzejewska Z (2018) The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with β-glycerophosphate disodium. J Appl Polym Sci 135(27):46459CrossRef
Zurück zum Zitat Thanou M, Kotze A, Scharringhausen T, Luessen H, De Boer A, Verhoef J, Junginger H (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64(1–3):15–25CrossRef Thanou M, Kotze A, Scharringhausen T, Luessen H, De Boer A, Verhoef J, Junginger H (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64(1–3):15–25CrossRef
Zurück zum Zitat Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 186:54–87CrossRef Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 186:54–87CrossRef
Zurück zum Zitat Verestiuc L, Ivanov C, Barbu E, Tsibouklis J (2004) Dual-stimuli-responsive hydrogels based on poly (N-isopropylacrylamide)/chitosan semi-interpenetrating networks. Int J Pharm 269(1):185–194CrossRef Verestiuc L, Ivanov C, Barbu E, Tsibouklis J (2004) Dual-stimuli-responsive hydrogels based on poly (N-isopropylacrylamide)/chitosan semi-interpenetrating networks. Int J Pharm 269(1):185–194CrossRef
Zurück zum Zitat Wang Z, Wang R, Xu P, Yu J, Liu L, Fan Y (2019) Physical nanochitin/microemulsion composite hydrogels for hydrophobic Nile Red release under in vitro physiological conditions. Cellulose 26(2):1221–1230CrossRef Wang Z, Wang R, Xu P, Yu J, Liu L, Fan Y (2019) Physical nanochitin/microemulsion composite hydrogels for hydrophobic Nile Red release under in vitro physiological conditions. Cellulose 26(2):1221–1230CrossRef
Zurück zum Zitat Ye W, Ma H, Liu L, Yu J, Lai J, Fang Y, Fan Y (2019) Biocatalyzed route for the preparation of surface-deacetylated chitin nanofibers. Green Chem 21(11):3143–3151CrossRef Ye W, Ma H, Liu L, Yu J, Lai J, Fang Y, Fan Y (2019) Biocatalyzed route for the preparation of surface-deacetylated chitin nanofibers. Green Chem 21(11):3143–3151CrossRef
Zurück zum Zitat Zhang X, Ding Y, Zhang G, Li L, Yan Y (2011) Preparation and rheological studies on the solvent based acrylic pressure sensitive adhesives with different crosslinking density. Int J Adhes Adhes 31(7):760–766CrossRef Zhang X, Ding Y, Zhang G, Li L, Yan Y (2011) Preparation and rheological studies on the solvent based acrylic pressure sensitive adhesives with different crosslinking density. Int J Adhes Adhes 31(7):760–766CrossRef
Zurück zum Zitat Zhang S, Li J, Chen S, Zhang X, Ma J, He J (2020) Oxidized cellulose-based hemostatic materials. Carbohydr Polym 230:115585CrossRef Zhang S, Li J, Chen S, Zhang X, Ma J, He J (2020) Oxidized cellulose-based hemostatic materials. Carbohydr Polym 230:115585CrossRef
Metadaten
Titel
Fabrication of glycerophosphate-based nanochitin hydrogels for prolonged release under in vitro physiological conditions
verfasst von
Liang Liu
Huazhong Ma
Juan Yu
Yimin Fan
Publikationsdatum
26.03.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2021
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-03819-5

Weitere Artikel der Ausgabe 8/2021

Cellulose 8/2021 Zur Ausgabe