Skip to main content
Erschienen in: Journal of Polymer Research 2/2021

01.02.2021 | ORIGINAL PAPER

Fabrication of highly thermal conductive PA6/hBN composites via in-situ polymerization process

verfasst von: He-xin Zhang, Do Hyun Seo, Dong-Eun Lee, Keun-Byoung Yoon

Erschienen in: Journal of Polymer Research | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, thermally conductive polyamide 6/hexagonal boron nitride (PA6/hBN) nanocomposites waaere fabricated via an in-situ ring-opening polymerization of ε-caprolactam. The hBN filler was exfoliated through a co-solvent exfoliation process and then chemically modified to form an ε-caprolactam-grafted BN (cBN). After that, PA6 was introduced onto the cBN surface using a grafting from method. The thermal conductivities of the PA6/cBN composites significantly increased up to 180 % when the BN content was 16.5 wt%. The tensile strength and Young’s modulus of the PA6/cBN composites with 16.5 wt% hBN increased by 30 % and 92 %, respectively, compared to the pristine PA6. The grafted PA6 on BN composites exhibited strong polymer-filler interfacial interactions. Overall, this study provides a facile method of fabricating high-performance PA6 with improved thermal and mechanical properties and higher thermal conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Guo Y, Zuo X, Xue Y et al (2020) Engineering thermally and electrically conductive biodegradable polymer nanocomposites. Compos Part B Eng 189:107905CrossRef Guo Y, Zuo X, Xue Y et al (2020) Engineering thermally and electrically conductive biodegradable polymer nanocomposites. Compos Part B Eng 189:107905CrossRef
2.
Zurück zum Zitat Joy J, George E, Thomas S et al (2020) Effect of filler loading on polymer chain confinement and thermomechanical properties of epoxy/boron nitride(h-BN) nanocomposites. New J Chem 44:4494–4503CrossRef Joy J, George E, Thomas S et al (2020) Effect of filler loading on polymer chain confinement and thermomechanical properties of epoxy/boron nitride(h-BN) nanocomposites. New J Chem 44:4494–4503CrossRef
3.
Zurück zum Zitat Guerra V, Wan C, McNally T (2019) Thermal conductivity of 2D nanostructured boron nitride (BN) and its composites with polymers. Prog Mater Sci 100:170-186 Guerra V, Wan C, McNally T (2019) Thermal conductivity of 2D nanostructured boron nitride (BN) and its composites with polymers. Prog Mater Sci 100:170-186
4.
Zurück zum Zitat Akatsuka M, Takezawa Y (2003) Study of high thermal conductive epoxy resins containing controlled high-order structures. J Appl Polym Sci 89:2464–2467CrossRef Akatsuka M, Takezawa Y (2003) Study of high thermal conductive epoxy resins containing controlled high-order structures. J Appl Polym Sci 89:2464–2467CrossRef
5.
Zurück zum Zitat Hu M, Yu D, Wei J (2007) Thermal conductivity determination of small polymer samples by differential scanning calorimetry. Polym Test 26:333–337CrossRef Hu M, Yu D, Wei J (2007) Thermal conductivity determination of small polymer samples by differential scanning calorimetry. Polym Test 26:333–337CrossRef
6.
Zurück zum Zitat Watari K, Shinde SL (2001) High thermal conductivity materials. MRS Bull 26:440–444CrossRef Watari K, Shinde SL (2001) High thermal conductivity materials. MRS Bull 26:440–444CrossRef
7.
Zurück zum Zitat Morishita T, Matsushita M, Katagiri Y et al (2011) A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J Mater Chem 21:5610–5614CrossRef Morishita T, Matsushita M, Katagiri Y et al (2011) A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J Mater Chem 21:5610–5614CrossRef
8.
Zurück zum Zitat Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef Yu A, Ramesh P, Sun X et al (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20:4740–4744CrossRef
9.
Zurück zum Zitat Ren L, Pashayi K, Fard HR et al (2014) Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Compos B Eng 58:228–234CrossRef Ren L, Pashayi K, Fard HR et al (2014) Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Compos B Eng 58:228–234CrossRef
10.
Zurück zum Zitat Gu J, Zhang Q, Dang J et al (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23:1025–1028CrossRef Gu J, Zhang Q, Dang J et al (2012) Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol 23:1025–1028CrossRef
12.
Zurück zum Zitat Li C, Bando Y, Zhi C et al (2009) Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20:385707PubMedCrossRef Li C, Bando Y, Zhi C et al (2009) Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20:385707PubMedCrossRef
13.
Zurück zum Zitat Ouyang T, Chen Y, Xie Y et al (2010) Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21:245701PubMedCrossRef Ouyang T, Chen Y, Xie Y et al (2010) Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21:245701PubMedCrossRef
14.
Zurück zum Zitat Huang MT, Ishida H (1999) Investigation of the boron nitride/polybenzoxazine interphase. J Polym Sci B Polym Phys 37:2360–2372CrossRef Huang MT, Ishida H (1999) Investigation of the boron nitride/polybenzoxazine interphase. J Polym Sci B Polym Phys 37:2360–2372CrossRef
15.
Zurück zum Zitat Golberg D, Bando Y, Huang Y et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993PubMedCrossRef Golberg D, Bando Y, Huang Y et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993PubMedCrossRef
16.
Zurück zum Zitat Pacile D, Meyer JC, Girit ÇÖ et al (2008) The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107CrossRef Pacile D, Meyer JC, Girit ÇÖ et al (2008) The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107CrossRef
17.
Zurück zum Zitat Li LH, Chen Y, Behan G et al (2011) Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J Mater Chem 21:11862–11866CrossRef Li LH, Chen Y, Behan G et al (2011) Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. J Mater Chem 21:11862–11866CrossRef
18.
Zurück zum Zitat Yu J, Huang X, Wu C et al (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53:471–480CrossRef Yu J, Huang X, Wu C et al (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53:471–480CrossRef
19.
Zurück zum Zitat Zhi C, Bando Y, Tang C et al (2009) Large scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893CrossRef Zhi C, Bando Y, Tang C et al (2009) Large scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21:2889–2893CrossRef
20.
Zurück zum Zitat Zhou KG, Mao NN, Wang HX et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842CrossRef Zhou KG, Mao NN, Wang HX et al (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50:10839–10842CrossRef
21.
Zurück zum Zitat Cao L, Emami S (2014) Lafdi. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase. Mater Express 4:165-171 Cao L, Emami S (2014) Lafdi. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase. Mater Express 4:165-171
22.
Zurück zum Zitat Kuilla T, Bhadra S, Yao D et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef Kuilla T, Bhadra S, Yao D et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRef
23.
Zurück zum Zitat Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRef
24.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef
25.
Zurück zum Zitat Wang X, Kalali EN, Wang DY (2015) An in situ polymerization approach for functionalized MoS2/Nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A Mater 3:24112–24120CrossRef Wang X, Kalali EN, Wang DY (2015) An in situ polymerization approach for functionalized MoS2/Nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. J Mater Chem A Mater 3:24112–24120CrossRef
26.
Zurück zum Zitat Liang J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef Liang J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRef
27.
Zurück zum Zitat Fang M, Wang K, Lu H et al (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992CrossRef Fang M, Wang K, Lu H et al (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992CrossRef
28.
Zurück zum Zitat Gonçalves G, Marques PA, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef Gonçalves G, Marques PA, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934CrossRef
29.
Zurück zum Zitat Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288PubMedCrossRef Lee SH, Dreyer DR, An J et al (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288PubMedCrossRef
30.
Zurück zum Zitat Kan L, Xu Z, Gao C (2011) General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 44:444–452CrossRef Kan L, Xu Z, Gao C (2011) General avenue to individually dispersed graphene oxide-based two-dimensional molecular brushes by free radical polymerization. Macromolecules 44:444–452CrossRef
31.
Zurück zum Zitat Bhimanapati GR, Kozuch D, Robinson JA (2014) Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale 6:11671–11675PubMedCrossRef Bhimanapati GR, Kozuch D, Robinson JA (2014) Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale 6:11671–11675PubMedCrossRef
32.
Zurück zum Zitat Ryu S, Kim K, Kim J (2017) Silane surface modification of boron nitride for high thermal conductivity with polyphenylene sulfide via melt mixing method. Polym Adv Technol 28:1489–1494CrossRef Ryu S, Kim K, Kim J (2017) Silane surface modification of boron nitride for high thermal conductivity with polyphenylene sulfide via melt mixing method. Polym Adv Technol 28:1489–1494CrossRef
33.
Zurück zum Zitat Kumari S, Sharma OP, Gusain R et al (2014) Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction. ACS Appl Mater Interfaces 7:3708–3716CrossRef Kumari S, Sharma OP, Gusain R et al (2014) Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction. ACS Appl Mater Interfaces 7:3708–3716CrossRef
34.
Zurück zum Zitat Lin Y, Williams TV, Connell JW (2009) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283CrossRef Lin Y, Williams TV, Connell JW (2009) Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett 1:277–283CrossRef
35.
Zurück zum Zitat Lee J, Jung H, Yu S et al (2016) Boron Nitride Nanosheets (BNNSs) Chemically Modified by “Grafting-From” Polymerization of Poly(caprolactone) for Thermally Conductive Polymer Composites. Chem Asian J 11:1921–1928PubMedCrossRef Lee J, Jung H, Yu S et al (2016) Boron Nitride Nanosheets (BNNSs) Chemically Modified by “Grafting-From” Polymerization of Poly(caprolactone) for Thermally Conductive Polymer Composites. Chem Asian J 11:1921–1928PubMedCrossRef
36.
Zurück zum Zitat Hou J, Li G, Yang N et al (2014) Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv 4:44282–44290CrossRef Hou J, Li G, Yang N et al (2014) Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv 4:44282–44290CrossRef
37.
Zurück zum Zitat Yang M, Gao Y, Li H et al (2007) Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon 45:2327–2333CrossRef Yang M, Gao Y, Li H et al (2007) Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon 45:2327–2333CrossRef
38.
Zurück zum Zitat Zhang X, Fan X, Li H et al (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22:24081–24091CrossRef Zhang X, Fan X, Li H et al (2012) Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization. J Mater Chem 22:24081–24091CrossRef
39.
Zurück zum Zitat Lim MY, Kim HJ, Baek SJ et al (2014) Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon 77:366–378CrossRef Lim MY, Kim HJ, Baek SJ et al (2014) Improved strength and toughness of polyketone composites using extremely small amount of polyamide 6 grafted graphene oxides. Carbon 77:366–378CrossRef
40.
Zurück zum Zitat Yang SY, Ma CCM, Teng CC et al (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603CrossRef Yang SY, Ma CCM, Teng CC et al (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603CrossRef
41.
Zurück zum Zitat Lincoln DM, Vaia RA, Wang ZG et al (2001) Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites. Polymer 42:1621–1631CrossRef Lincoln DM, Vaia RA, Wang ZG et al (2001) Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites. Polymer 42:1621–1631CrossRef
42.
Zurück zum Zitat Meng H, Sui GX, Fang PF et al (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49:610–620CrossRef Meng H, Sui GX, Fang PF et al (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49:610–620CrossRef
43.
Zurück zum Zitat Yang N, Xu C, Hou J et al (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6:18279–18287CrossRef Yang N, Xu C, Hou J et al (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6:18279–18287CrossRef
Metadaten
Titel
Fabrication of highly thermal conductive PA6/hBN composites via in-situ polymerization process
verfasst von
He-xin Zhang
Do Hyun Seo
Dong-Eun Lee
Keun-Byoung Yoon
Publikationsdatum
01.02.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 2/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-020-02378-w

Weitere Artikel der Ausgabe 2/2021

Journal of Polymer Research 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.