Skip to main content
Erschienen in: Journal of Materials Science 7/2017

21.12.2016 | Original Paper

Fabrication of one-dimensional CdFe2O4 yolk/shell flat nanotubes as a high-performance anode for lithium-ion batteries

verfasst von: Jianan Wang, Guorui Yang, Ling Wang, Wei Yan

Erschienen in: Journal of Materials Science | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spinel ferrite CdFe2O4, one of the binary transition metal oxides, has been endowed with extreme expectation to be a preferable anode material for lithium-ion batteries (LIBs) due to the presence of the alloy (Li3Cd) during the process of Li-ion intercalation. In this work, one-dimensional CdFe2O4 yolk/shell flat nanotubes were fabricated by the facile single-spinneret electrospinning technique. The unique CdFe2O4 structure was constituted by an outer CdFe2O4 flat nanotube and a loose yolk fiber and was clearly shown in the images of the field-emission scanning electron microscopy and transmission electron microscopy. The essential properties of the nanoribbons, such as morphologies, structures, crystalline phases, chemical compositions, and pore properties were further investigated and characterized. As an anode for LIBs, the CdFe2O4 yolk/shell flat nanotubes delivered a large reversible capacity of 720 mA h g−1 even after 420 cycles at current density of 200 mA g−1 with excellent stability and good rate performance. The remarkable performances of the new material on the electrochemical Li-storage are ascribed to the high Li-ion and electron-transfer efficiency and the excellent stability, profiting from its unique continuous one-dimensional yolk/shell flat nanotube structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang Y, Yi J, Xia Y (2012) Recent progress in aqueous lithium-ion batteries. Adv Energy Mater 2:830–840CrossRef Wang Y, Yi J, Xia Y (2012) Recent progress in aqueous lithium-ion batteries. Adv Energy Mater 2:830–840CrossRef
2.
Zurück zum Zitat Sasaki T, Ukyo Y, Novák P (2013) Memory effect in a lithium-ion battery. Nat Mater 12:569–575CrossRef Sasaki T, Ukyo Y, Novák P (2013) Memory effect in a lithium-ion battery. Nat Mater 12:569–575CrossRef
3.
Zurück zum Zitat Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, Liu F, Dai F, Yang L, Liu Z, Xiao X, Liu G, Zhao P, Zhang S, Wang C, Lu Y, Cai M (2015) Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat Commun 6:8844CrossRef Xiao Q, Gu M, Yang H, Li B, Zhang C, Liu Y, Liu F, Dai F, Yang L, Liu Z, Xiao X, Liu G, Zhao P, Zhang S, Wang C, Lu Y, Cai M (2015) Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat Commun 6:8844CrossRef
4.
Zurück zum Zitat Mahmood N, Hou Y (2014) Electrode nanostructures in lithium-based batteries. Adv Sci 1:1400012CrossRef Mahmood N, Hou Y (2014) Electrode nanostructures in lithium-based batteries. Adv Sci 1:1400012CrossRef
5.
Zurück zum Zitat Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef
6.
Zurück zum Zitat Pan L, Zhu X-D, Xie X-M, Liu Y-T (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater 25:3341–3350CrossRef Pan L, Zhu X-D, Xie X-M, Liu Y-T (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater 25:3341–3350CrossRef
7.
Zurück zum Zitat Duan Z-Q, Liu Y-T, Xie X-M, Ye X-Y, Zhu X-D (2016) h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles: a hybrid anode material for lithium-ion batteries. Chem Asian J 11:828–833CrossRef Duan Z-Q, Liu Y-T, Xie X-M, Ye X-Y, Zhu X-D (2016) h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles: a hybrid anode material for lithium-ion batteries. Chem Asian J 11:828–833CrossRef
8.
Zurück zum Zitat Zhong XB, Wang HY, Yang ZZ, Jin B, Jiang QC (2015) Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J Power Sources 296:298–304CrossRef Zhong XB, Wang HY, Yang ZZ, Jin B, Jiang QC (2015) Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J Power Sources 296:298–304CrossRef
9.
Zurück zum Zitat Cherian CT, Reddy MV, Rao GVS, Sow CH, Chowdari BVR (2012) Li-cycling properties of nano-crystalline (Ni1−xZnx)Fe2O4 (0 ≤ x ≤ 1). J Solid State Electr 16:1823–1832CrossRef Cherian CT, Reddy MV, Rao GVS, Sow CH, Chowdari BVR (2012) Li-cycling properties of nano-crystalline (Ni1−xZnx)Fe2O4 (0 ≤ x ≤ 1). J Solid State Electr 16:1823–1832CrossRef
10.
Zurück zum Zitat Xu J, He L, Xu W, Tang H, Liu H, Han T, Zhang C, Zhang Y (2014) Facile synthesis of porous NiCo2O4 microflowers as high-performance anode materials for advanced lithium-ion batteries. Electrochim Acta 145:185–192CrossRef Xu J, He L, Xu W, Tang H, Liu H, Han T, Zhang C, Zhang Y (2014) Facile synthesis of porous NiCo2O4 microflowers as high-performance anode materials for advanced lithium-ion batteries. Electrochim Acta 145:185–192CrossRef
11.
Zurück zum Zitat Yang G, Xu X, Yan W, Yang H, Ding S (2014) Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Mater Lett 128:336–339CrossRef Yang G, Xu X, Yan W, Yang H, Ding S (2014) Facile synthesis of interwoven ZnMn2O4 nanofibers by electrospinning and their performance in Li-ion batteries. Mater Lett 128:336–339CrossRef
12.
Zurück zum Zitat Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172:379–387CrossRef Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172:379–387CrossRef
13.
Zurück zum Zitat Li T, Li X, Wang Z, Guo H, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries. J Mater Chem A 3:11970–11975CrossRef Li T, Li X, Wang Z, Guo H, Li Y (2015) A novel NiCo2O4 anode morphology for lithium-ion batteries. J Mater Chem A 3:11970–11975CrossRef
14.
Zurück zum Zitat Wang L, Zhang X, Shen G, Peng X, Zhang M, Xu J (2016) Flexible and free-standing ternary Cd2GeO4 nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance. Nanotechnology 27:095602CrossRef Wang L, Zhang X, Shen G, Peng X, Zhang M, Xu J (2016) Flexible and free-standing ternary Cd2GeO4 nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance. Nanotechnology 27:095602CrossRef
15.
Zurück zum Zitat Qi Y, Du N, Zhang H, Wu P, Yang D (2011) Synthesis of Co2SnO4@C core–shell nanostructures with reversible lithium storage. J Power Sources 196:10234–10239CrossRef Qi Y, Du N, Zhang H, Wu P, Yang D (2011) Synthesis of Co2SnO4@C core–shell nanostructures with reversible lithium storage. J Power Sources 196:10234–10239CrossRef
16.
Zurück zum Zitat Zhang R, He Y, Xu L (2014) Controllable synthesis of hierarchical ZnSn(OH)6 and Zn2SnO4 hollow nanospheres and their applications as anodes for lithium ion batteries. J Mater Chem A 2:17979–17985CrossRef Zhang R, He Y, Xu L (2014) Controllable synthesis of hierarchical ZnSn(OH)6 and Zn2SnO4 hollow nanospheres and their applications as anodes for lithium ion batteries. J Mater Chem A 2:17979–17985CrossRef
17.
Zurück zum Zitat Zhang S, Ren L, Peng S (2014) Zn2SiO4 urchin-like microspheres: controlled synthesis and application in lithium-ion batteries. CrystEngComm 16:6195–6202CrossRef Zhang S, Ren L, Peng S (2014) Zn2SiO4 urchin-like microspheres: controlled synthesis and application in lithium-ion batteries. CrystEngComm 16:6195–6202CrossRef
18.
Zurück zum Zitat Yuvaraj S, Selvan RK, Lee YS (2016) An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries. RSC Adv 6:21448–21474CrossRef Yuvaraj S, Selvan RK, Lee YS (2016) An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries. RSC Adv 6:21448–21474CrossRef
19.
Zurück zum Zitat Kong J, Yao X, Wei Y, Zhao C, Ang JM, Lu X (2015) Polydopamine-derived porous nanofibers as host of ZnFe2O4 nanoneedles: towards high-performance anodes for lithium-ion batteries. RSC Adv 5:13315–13323CrossRef Kong J, Yao X, Wei Y, Zhao C, Ang JM, Lu X (2015) Polydopamine-derived porous nanofibers as host of ZnFe2O4 nanoneedles: towards high-performance anodes for lithium-ion batteries. RSC Adv 5:13315–13323CrossRef
20.
Zurück zum Zitat Xiao W, Chen JS, Li CM, Xu R, Lou XW (2010) Synthesis, characterization, and lithium storage capability of AMoO4(A = Ni, Co) nanorods. Chem Mater 22:746–754CrossRef Xiao W, Chen JS, Li CM, Xu R, Lou XW (2010) Synthesis, characterization, and lithium storage capability of AMoO4(A = Ni, Co) nanorods. Chem Mater 22:746–754CrossRef
21.
Zurück zum Zitat Gorter EW (1950) Magnetization in ferrites saturation magnetization of ferrites with spinel structure. Nature 165:798–800CrossRef Gorter EW (1950) Magnetization in ferrites saturation magnetization of ferrites with spinel structure. Nature 165:798–800CrossRef
22.
Zurück zum Zitat Vasanthi V, Shanmugavani A, Sanjeeviraja C, Kalai Selvan R (2012) Microwave assisted combustion synthesis of CdFe2O4: magnetic and electrical properties. J Magn Magn Mater 324:2100–2107CrossRef Vasanthi V, Shanmugavani A, Sanjeeviraja C, Kalai Selvan R (2012) Microwave assisted combustion synthesis of CdFe2O4: magnetic and electrical properties. J Magn Magn Mater 324:2100–2107CrossRef
23.
Zurück zum Zitat Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2009) Li-storage and cycling properties of spinel, CdFe2O4, as an anode for lithium ion batteries. Bull Mater Sci 32:295–304CrossRef Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2009) Li-storage and cycling properties of spinel, CdFe2O4, as an anode for lithium ion batteries. Bull Mater Sci 32:295–304CrossRef
24.
Zurück zum Zitat Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X (2014) Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Sources 258:305–313CrossRef Yao L, Hou X, Hu S, Wang J, Li M, Su C, Tade MO, Shao Z, Liu X (2014) Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. J Power Sources 258:305–313CrossRef
25.
Zurück zum Zitat Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7:19789–19873CrossRef Purbia R, Paria S (2015) Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. Nanoscale 7:19789–19873CrossRef
26.
Zurück zum Zitat Wu F, Bai J, Feng J, Xiong S (2015) Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries. Nanoscale 7:17211–17230CrossRef Wu F, Bai J, Feng J, Xiong S (2015) Porous mixed metal oxides: design, formation mechanism, and application in lithium-ion batteries. Nanoscale 7:17211–17230CrossRef
27.
Zurück zum Zitat Wu J, Wang N, Zhao Y, Jiang L (2013) Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater Chem A 1:7290–7305CrossRef Wu J, Wang N, Zhao Y, Jiang L (2013) Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J Mater Chem A 1:7290–7305CrossRef
28.
Zurück zum Zitat Zhang B, Hao S, Xiao D, Wu J, Huang Y (2016) Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater Des 98:319–323 Zhang B, Hao S, Xiao D, Wu J, Huang Y (2016) Templated formation of porous Mn2O3 octahedra from Mn-MIL-100 for lithium-ion battery anode materials. Mater Des 98:319–323
29.
Zurück zum Zitat Hao S, Zhang B, Ball S, Hu B, Wu J, Huang Y (2016) Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries. Mater Des 92:160–165 Hao S, Zhang B, Ball S, Hu B, Wu J, Huang Y (2016) Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries. Mater Des 92:160–165
30.
Zurück zum Zitat Hong YJ, Kim JH, Kang YC (2016) Sodium-ion storage performance of hierarchically structured (Co1/3Fe2/3)Se2 nanofibers with fiber-in-tube nanostructures. J Mater Chem A 4:15471–15477CrossRef Hong YJ, Kim JH, Kang YC (2016) Sodium-ion storage performance of hierarchically structured (Co1/3Fe2/3)Se2 nanofibers with fiber-in-tube nanostructures. J Mater Chem A 4:15471–15477CrossRef
31.
Zurück zum Zitat Li S, Wang Z, Liu J, Yang L, Guo Y, Cheng L, Lei M, Wang W (2016) Yolk–shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl Mater Interfaces 8:19438–19445CrossRef Li S, Wang Z, Liu J, Yang L, Guo Y, Cheng L, Lei M, Wang W (2016) Yolk–shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl Mater Interfaces 8:19438–19445CrossRef
32.
Zurück zum Zitat Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K (2015) Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy 13:77–91CrossRef Zhang Q, Wang J, Dong J, Ding F, Li X, Zhang B, Yang S, Zhang K (2015) Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy 13:77–91CrossRef
33.
Zurück zum Zitat Cherian CT, Sundaramurthy J, Reddy MV, Suresh Kumar P, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BV (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5:9957–9963CrossRef Cherian CT, Sundaramurthy J, Reddy MV, Suresh Kumar P, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BV (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5:9957–9963CrossRef
34.
Zurück zum Zitat Won JM, Choi SH, Hong YJ, Ko YN, Kang YC (2014) Electrochemical properties of yolk–shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery. Sci Rep 4:5857CrossRef Won JM, Choi SH, Hong YJ, Ko YN, Kang YC (2014) Electrochemical properties of yolk–shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery. Sci Rep 4:5857CrossRef
35.
Zurück zum Zitat Wang J, Yang G, Wang L, Yan W (2016) Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries. J Mater Chem A 4:8620–8629CrossRef Wang J, Yang G, Wang L, Yan W (2016) Synthesis of one-dimensional NiFe2O4 nanostructures: tunable morphology and high-performance anode materials for Li ion batteries. J Mater Chem A 4:8620–8629CrossRef
36.
Zurück zum Zitat Hong YJ, Yoon JW, Lee JH, Kang YC (2015) A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties. Chem Eur J 21:371–376CrossRef Hong YJ, Yoon JW, Lee JH, Kang YC (2015) A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties. Chem Eur J 21:371–376CrossRef
37.
Zurück zum Zitat Li HZ, Yang LY, Liu J, Li ST, Fang LB, Lu YK, Yang HR, Liu SL, Lei M (2016) Improved electrochemical performance of yolk–shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J Power Sources 324:780–787CrossRef Li HZ, Yang LY, Liu J, Li ST, Fang LB, Lu YK, Yang HR, Liu SL, Lei M (2016) Improved electrochemical performance of yolk–shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J Power Sources 324:780–787CrossRef
38.
Zurück zum Zitat He JH, Wan YQ (2004) Allometric scaling for voltage and current in electrospinning. Polymer 45:6731–6734CrossRef He JH, Wan YQ (2004) Allometric scaling for voltage and current in electrospinning. Polymer 45:6731–6734CrossRef
39.
Zurück zum Zitat Yang G, Yan W, Wang J, Yang H (2014) Fabrication and formation mechanism of Mn2O3 hollow nanofibers by single-spinneret electrospinning. CrystEngComm 16:6907–6913CrossRef Yang G, Yan W, Wang J, Yang H (2014) Fabrication and formation mechanism of Mn2O3 hollow nanofibers by single-spinneret electrospinning. CrystEngComm 16:6907–6913CrossRef
40.
Zurück zum Zitat Chen X, Unruh KM, Ni C, Ali B, Sun Z, Lu Q, Deitzel J, Xiao JQ (2011) Fabrication, formation mechanism, and magnetic properties of metal oxide nanotubes via electrospinning and thermal treatment. J Phys Chem C 115:373–378CrossRef Chen X, Unruh KM, Ni C, Ali B, Sun Z, Lu Q, Deitzel J, Xiao JQ (2011) Fabrication, formation mechanism, and magnetic properties of metal oxide nanotubes via electrospinning and thermal treatment. J Phys Chem C 115:373–378CrossRef
41.
Zurück zum Zitat Xiang H, Long Y, Yu X, Zhang X, Zhao N, Xu J (2011) A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. CrystEngComm 13:4856–4860CrossRef Xiang H, Long Y, Yu X, Zhang X, Zhao N, Xu J (2011) A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning. CrystEngComm 13:4856–4860CrossRef
42.
Zurück zum Zitat Su Y, Lu B, Xie Y, Ma Z, Liu L, Zhao H, Zhang J, Duan H, Zhang H, Li J, Xiong Y, Xie E (2011) Temperature effect on electrospinning of nanobelts: the case of hafnium oxide. Nanotechnology 22:285609CrossRef Su Y, Lu B, Xie Y, Ma Z, Liu L, Zhao H, Zhang J, Duan H, Zhang H, Li J, Xiong Y, Xie E (2011) Temperature effect on electrospinning of nanobelts: the case of hafnium oxide. Nanotechnology 22:285609CrossRef
43.
Zurück zum Zitat Zhang G, Yu L, Wu HB, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613CrossRef Zhang G, Yu L, Wu HB, Hoster HE, Lou XW (2012) Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater 24:4609–4613CrossRef
44.
Zurück zum Zitat Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919CrossRef Dzenis Y (2004) Spinning continuous fibers for nanotechnology. Science 304:1917–1919CrossRef
45.
Zurück zum Zitat Zhang H, Jing S, Hu Y, Jiang H, Li C (2016) A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. J Power Sources 307:214–219CrossRef Zhang H, Jing S, Hu Y, Jiang H, Li C (2016) A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. J Power Sources 307:214–219CrossRef
46.
Zurück zum Zitat Liu J, Huang K, Tang HL, Lei M (2016) Porous and single-crystalline-like molybdenum nitride nanobelts as a non-noble electrocatalyst for alkaline fuel cells and electrode materials for supercapacitors. Int J Hydrog Energy 41:996–1001CrossRef Liu J, Huang K, Tang HL, Lei M (2016) Porous and single-crystalline-like molybdenum nitride nanobelts as a non-noble electrocatalyst for alkaline fuel cells and electrode materials for supercapacitors. Int J Hydrog Energy 41:996–1001CrossRef
47.
Zurück zum Zitat Jaroniec M, Kurk M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183CrossRef Jaroniec M, Kurk M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183CrossRef
48.
Zurück zum Zitat Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai YW, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRef Chen Y, Li X, Park K, Song J, Hong J, Zhou L, Mai YW, Huang H, Goodenough JB (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc 135:16280–16283CrossRef
49.
Zurück zum Zitat Cai Y, Wang HE, Huang SZ, Jin J, Wang C, Yu Y, Li Y, Su BL (2015) Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci Rep 5:11557CrossRef Cai Y, Wang HE, Huang SZ, Jin J, Wang C, Yu Y, Li Y, Su BL (2015) Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Sci Rep 5:11557CrossRef
50.
Zurück zum Zitat Alraddadi S, Hines W, Yilmaz T, Gu GD, Sinkovic B (2016) Structural phase diagram for ultra-thin epitaxial Fe3O4/MgO (001) films: thickness and oxygen pressure dependence. J Phys Condens Matter 28:115402CrossRef Alraddadi S, Hines W, Yilmaz T, Gu GD, Sinkovic B (2016) Structural phase diagram for ultra-thin epitaxial Fe3O4/MgO (001) films: thickness and oxygen pressure dependence. J Phys Condens Matter 28:115402CrossRef
51.
Zurück zum Zitat Reitz C, Suchomski C, Chakravadhanula VS, Djerdj I, Jaglicic Z, Brezesinski T (2013) Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses. Inorg Chem 52:3744–3754CrossRef Reitz C, Suchomski C, Chakravadhanula VS, Djerdj I, Jaglicic Z, Brezesinski T (2013) Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses. Inorg Chem 52:3744–3754CrossRef
52.
Zurück zum Zitat Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRef Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRef
53.
Zurück zum Zitat Wang J, Yang G, Lyu W, Yan W (2016) Thorny TiO2 nanofibers: synthesis, enhanced photocatalytic activity and supercapacitance. J Alloy Compd 659:138–145CrossRef Wang J, Yang G, Lyu W, Yan W (2016) Thorny TiO2 nanofibers: synthesis, enhanced photocatalytic activity and supercapacitance. J Alloy Compd 659:138–145CrossRef
54.
Zurück zum Zitat Yao L, Hou X, Hu S, Tang X, Liu X, Ru Q (2014) An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J Alloy Compd 585:398–403CrossRef Yao L, Hou X, Hu S, Tang X, Liu X, Ru Q (2014) An excellent performance anode of ZnFe2O4/flake graphite composite for lithium ion battery. J Alloy Compd 585:398–403CrossRef
55.
Zurück zum Zitat Vidal-Abarca C, Lavela P, Tirado JL (2010) The origin of capacity fading in NiFe2O4 conversion electrodes for lithium ion batteries unfolded by 57Fe Mössbauer spectroscopy. J Phys Chem C 114:12828–12832CrossRef Vidal-Abarca C, Lavela P, Tirado JL (2010) The origin of capacity fading in NiFe2O4 conversion electrodes for lithium ion batteries unfolded by 57Fe Mössbauer spectroscopy. J Phys Chem C 114:12828–12832CrossRef
56.
Zurück zum Zitat Zhou L, Wu HB, Zhu T, Lou XW (2012) Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem 22:827–829CrossRef Zhou L, Wu HB, Zhu T, Lou XW (2012) Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem 22:827–829CrossRef
57.
Zurück zum Zitat Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X (2015) Self-sacrifice template fabrication of hierarchical mesoporous Bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater 25:238–246CrossRef Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X (2015) Self-sacrifice template fabrication of hierarchical mesoporous Bi-component-active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater 25:238–246CrossRef
58.
Zurück zum Zitat Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904CrossRef Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904CrossRef
59.
Zurück zum Zitat Cheng X-B, Zhang R, Zhao C-Z, Wei F, Zhang J-G, Zhang Q (2016) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3:1500213CrossRef Cheng X-B, Zhang R, Zhao C-Z, Wei F, Zhang J-G, Zhang Q (2016) A review of solid electrolyte interphases on lithium metal anode. Adv Sci 3:1500213CrossRef
60.
Zurück zum Zitat Hwang HS, Yoon T, Jang J, Kim JJ, Ryu JH, Oh SM (2017) Carbon fabric as a current collector for electroless-plated Cu6Sn5 negative electrode for lithium-ion batteries. J Alloy Compd 692:583–588CrossRef Hwang HS, Yoon T, Jang J, Kim JJ, Ryu JH, Oh SM (2017) Carbon fabric as a current collector for electroless-plated Cu6Sn5 negative electrode for lithium-ion batteries. J Alloy Compd 692:583–588CrossRef
61.
Zurück zum Zitat Xu H, Zhu X-D, Sun K-N, Liu Y-T, Xie X-M (2015) Elaborately designed hierarchical heterostructures consisting of carbon-coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles for remarkable synergy in high-rate lithium storage. Adv Mater Interfaces 2:1500239CrossRef Xu H, Zhu X-D, Sun K-N, Liu Y-T, Xie X-M (2015) Elaborately designed hierarchical heterostructures consisting of carbon-coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles for remarkable synergy in high-rate lithium storage. Adv Mater Interfaces 2:1500239CrossRef
62.
Zurück zum Zitat Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS, Lei M (2015) Dual yolk–shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep 5:10908CrossRef Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS, Lei M (2015) Dual yolk–shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep 5:10908CrossRef
63.
Zurück zum Zitat Wang J, Zhang Q, Li X, Zhang B, Mai L, Zhang K (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12:437–446CrossRef Wang J, Zhang Q, Li X, Zhang B, Mai L, Zhang K (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12:437–446CrossRef
64.
Zurück zum Zitat Liu S-L, Huang J, Liu J, Lei M, Min J, Li S, Liu G (2016) Porous Mo2N nanobelts as a new anode material for sodium-ion batteries. Mater Lett 172:56–59CrossRef Liu S-L, Huang J, Liu J, Lei M, Min J, Li S, Liu G (2016) Porous Mo2N nanobelts as a new anode material for sodium-ion batteries. Mater Lett 172:56–59CrossRef
65.
Zurück zum Zitat Xin L, Liu Y, Li B, Zhou X, Shen H, Zhao W, Liang C (2014) Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci Rep 4:4479 Xin L, Liu Y, Li B, Zhou X, Shen H, Zhao W, Liang C (2014) Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Sci Rep 4:4479
66.
Zurück zum Zitat Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402CrossRef Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402CrossRef
67.
Zurück zum Zitat Zhou D, Song WL, Fan LZ (2015) Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl Mater Interfaces 7:21472–21478CrossRef Zhou D, Song WL, Fan LZ (2015) Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl Mater Interfaces 7:21472–21478CrossRef
Metadaten
Titel
Fabrication of one-dimensional CdFe2O4 yolk/shell flat nanotubes as a high-performance anode for lithium-ion batteries
verfasst von
Jianan Wang
Guorui Yang
Ling Wang
Wei Yan
Publikationsdatum
21.12.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0672-3

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Science 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.