Skip to main content
Erschienen in: Rare Metals 1/2019

29.10.2017

Fabrication of shish-kebab-structured carbon nanotube/poly(ε-caprolactone) composite nanofibers for potential tissue engineering applications

Erschienen in: Rare Metals | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrospinning process was applied to fabricate the nanofibers of biodegradable poly(ε-caprolactone) (PCL) in which different contents of multiwalled carbon nanotubes (MWCNTs) were embedded. Afterward, the electrospun nanofibers were successfully decorated with shish-kebab structure via a self-induced crystallization technique. The topographical features and the mechanical properties of the composite scaffolds were characterized, and the biocompatibility of the material was assessed by using human osteogenic sarcoma osteoblasts (MG-63 cells). The carbon nanotube (CNT) concentration is found to affect the fiber diameter and mechanical properties of electrospun nanofibers and the periodic distance of the shish-kebab architecture. Cellular attachment and proliferation assays reveal that 0.5 wt% CNT-embedded PCL scaffold shows enhanced biocompatibility with MG-63 cells than their counterparts made of neat PCL, and the collagen-like nanotopology provided by the shish-kebab structure further facilitates the cell adhesion and proliferation. The superior interactions between cells and scaffolds demonstrate that the shish-kebab-structured CNTs/PCL nanofibers may be promising candidate for tissue engineering scaffold application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Rabkin E, Schoen FJ. Cardiovascular tissue engineering. Cardiovasc Pathol. 2002;11(6):305.CrossRef Rabkin E, Schoen FJ. Cardiovascular tissue engineering. Cardiovasc Pathol. 2002;11(6):305.CrossRef
[2]
Zurück zum Zitat McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE, Loboa EG. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomed. 2007;2(2):253. McCullen SD, Stevens DR, Roberts WA, Clarke LI, Bernacki SH, Gorga RE, Loboa EG. Characterization of electrospun nanocomposite scaffolds and biocompatibility with adipose-derived human mesenchymal stem cells. Int J Nanomed. 2007;2(2):253.
[3]
Zurück zum Zitat Lin HM, Lin YH, Hsu FY. Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. J Mater Sci Mater Med. 2012;23(11):2619.CrossRef Lin HM, Lin YH, Hsu FY. Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. J Mater Sci Mater Med. 2012;23(11):2619.CrossRef
[4]
Zurück zum Zitat Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217.CrossRef Woodruff MA, Hutmacher DW. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217.CrossRef
[5]
Zurück zum Zitat Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115.CrossRef Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115.CrossRef
[6]
Zurück zum Zitat Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E, Agarwal A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials. 2007;28(4):618.CrossRef Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E, Agarwal A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials. 2007;28(4):618.CrossRef
[7]
Zurück zum Zitat Edwards SL, Church JS, Werkmeister JA, Ramshaw JAM. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials. 2009;30(9):1725.CrossRef Edwards SL, Church JS, Werkmeister JA, Ramshaw JAM. Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering. Biomaterials. 2009;30(9):1725.CrossRef
[8]
Zurück zum Zitat Shimizu M, Kobayashi Y, Mizoguchi T, Nakamura H, Kawahara I, Narita N, Usui Y, Aoki K, Hara K, Haniu H, Ogihara N, Ishigaki N, Nakamura K, Kato H, Kawakubo M, Dohi Y, Taruta S, Kim YA, Endo M, Ozawa H, Udagawa N, Takahashi N, Saito N. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv Mater. 2012;24(16):2176. Shimizu M, Kobayashi Y, Mizoguchi T, Nakamura H, Kawahara I, Narita N, Usui Y, Aoki K, Hara K, Haniu H, Ogihara N, Ishigaki N, Nakamura K, Kato H, Kawakubo M, Dohi Y, Taruta S, Kim YA, Endo M, Ozawa H, Udagawa N, Takahashi N, Saito N. Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv Mater. 2012;24(16):2176.
[9]
Zurück zum Zitat Lee JW, Park JW, Khang D. Analysis of osteoblast differentiation on polymer thin films embedded with carbon nanotubes. PLoS ONE. 2015;10(6):e0129856.CrossRef Lee JW, Park JW, Khang D. Analysis of osteoblast differentiation on polymer thin films embedded with carbon nanotubes. PLoS ONE. 2015;10(6):e0129856.CrossRef
[10]
Zurück zum Zitat Hirata E, Menard-Moyon C, Venturelli E, Takita H, Watari F, Bianco A, Yokoyama A. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology. 2013;24(43):435101.CrossRef Hirata E, Menard-Moyon C, Venturelli E, Takita H, Watari F, Bianco A, Yokoyama A. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology. 2013;24(43):435101.CrossRef
[11]
Zurück zum Zitat Shao SJ, Zhou SB, Li L, Li JR, Luo C, Wang JX, Li XH, Weng J. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials. 2011;32(11):2821.CrossRef Shao SJ, Zhou SB, Li L, Li JR, Luo C, Wang JX, Li XH, Weng J. Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials. 2011;32(11):2821.CrossRef
[12]
Zurück zum Zitat Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl. 2009;24(1):7.CrossRef Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl. 2009;24(1):7.CrossRef
[13]
Zurück zum Zitat Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 2006;12(3):435.CrossRef Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 2006;12(3):435.CrossRef
[14]
Zurück zum Zitat Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100.CrossRef Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100.CrossRef
[15]
Zurück zum Zitat Vargas EAT, Baracho NCD, de Brito J, de Queiroz AAA. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010;6(3):1069.CrossRef Vargas EAT, Baracho NCD, de Brito J, de Queiroz AAA. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010;6(3):1069.CrossRef
[16]
Zurück zum Zitat Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med. 2015;9(8):861.CrossRef Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med. 2015;9(8):861.CrossRef
[17]
Zurück zum Zitat Huang CB, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, Vervaet C, Coenye T, Verstraelen H, Temmerman M, Demeester J, De Smedt SC. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962.CrossRef Huang CB, Soenen SJ, van Gulck E, Vanham G, Rejman J, Van Calenbergh S, Vervaet C, Coenye T, Verstraelen H, Temmerman M, Demeester J, De Smedt SC. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials. 2012;33(3):962.CrossRef
[18]
Zurück zum Zitat Wang N, Burugapalli K, Song WH, Halls J, Moussy F, Ray A, Zheng YD. Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors. Biomaterials. 2013;34(4):888.CrossRef Wang N, Burugapalli K, Song WH, Halls J, Moussy F, Ray A, Zheng YD. Electrospun fibro-porous polyurethane coatings for implantable glucose biosensors. Biomaterials. 2013;34(4):888.CrossRef
[19]
Zurück zum Zitat Fang M, Goldstein EL, Matich EK, Orr BG, Holl MMB. Type I collagen self-assembly: the roles of substrate and concentration. Langmuir. 2013;29(7):2330.CrossRef Fang M, Goldstein EL, Matich EK, Orr BG, Holl MMB. Type I collagen self-assembly: the roles of substrate and concentration. Langmuir. 2013;29(7):2330.CrossRef
[20]
Zurück zum Zitat Fiedler J, Ozdemir B, Bartholoma J, Plettl A, Brenner RE, Ziemann P. The effect of substrate surface nanotopography on the behavior of multipotnent mesenchymal stromal cells and osteoblasts. Biomaterials. 2013;34(35):8851.CrossRef Fiedler J, Ozdemir B, Bartholoma J, Plettl A, Brenner RE, Ziemann P. The effect of substrate surface nanotopography on the behavior of multipotnent mesenchymal stromal cells and osteoblasts. Biomaterials. 2013;34(35):8851.CrossRef
[21]
Zurück zum Zitat Li CY, Li LY, Cai WW, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater. 2005;17(9):1198.CrossRef Li CY, Li LY, Cai WW, Kodjie SL, Tenneti KK. Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater. 2005;17(9):1198.CrossRef
[22]
Zurück zum Zitat Li LY, Li CY, Ni CY. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc. 2006;128(5):1692.CrossRef Li LY, Li CY, Ni CY. Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc. 2006;128(5):1692.CrossRef
[23]
Zurück zum Zitat Wang XF, Salick MR, Wang XD, Cordie T, Han WJ, Peng YY, Li Q, Turng LS. Poly(epsilon-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromol. 2013;14(10):3557.CrossRef Wang XF, Salick MR, Wang XD, Cordie T, Han WJ, Peng YY, Li Q, Turng LS. Poly(epsilon-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromol. 2013;14(10):3557.CrossRef
[24]
Zurück zum Zitat Liao GY, Zhou XP, Chen L, Zeng XY, Xie XL, Mai YW. Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos Sci Technol. 2012;72(2):248.CrossRef Liao GY, Zhou XP, Chen L, Zeng XY, Xie XL, Mai YW. Electrospun aligned PLLA/PCL/functionalised multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos Sci Technol. 2012;72(2):248.CrossRef
[25]
Zurück zum Zitat Tsai SW, Huang CC, Rau LR, Hsu FY. Fabrication of aligned carbon nanotube/polycaprolactone/gelatin nanofibrous matrices for Schwann cell immobilization. J Nanomater. 2014;. doi:10.1155/2014/498131. Tsai SW, Huang CC, Rau LR, Hsu FY. Fabrication of aligned carbon nanotube/polycaprolactone/gelatin nanofibrous matrices for Schwann cell immobilization. J Nanomater. 2014;. doi:10.​1155/​2014/​498131.
[26]
Zurück zum Zitat Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(epsilon-caprolactone) nanofibers hierarchically decorated with chitosan-poly(epsilon-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6955.CrossRef Jing X, Mi HY, Wang XC, Peng XF, Turng LS. Shish-kebab-structured poly(epsilon-caprolactone) nanofibers hierarchically decorated with chitosan-poly(epsilon-caprolactone) copolymers for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6955.CrossRef
[27]
Zurück zum Zitat Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI. Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Lett. 2007;7(5):1178.CrossRef Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI. Tuning the mechanical properties of SWNT/Nylon 6,10 composites with flexible spacers at the interface. Nano Lett. 2007;7(5):1178.CrossRef
[28]
Zurück zum Zitat Meng ZX, Zheng W, Li L, Zheng YF. Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning. Mater Sci Eng C. 2010;30(7):1014.CrossRef Meng ZX, Zheng W, Li L, Zheng YF. Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning. Mater Sci Eng C. 2010;30(7):1014.CrossRef
[29]
Zurück zum Zitat Volpato FZ, Ramos SLF, Motta A, Migliaresi C. Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. J Bioact Compat Polym. 2011;26(1):35.CrossRef Volpato FZ, Ramos SLF, Motta A, Migliaresi C. Physical and in vitro biological evaluation of a PA 6/MWCNT electrospun composite for biomedical applications. J Bioact Compat Polym. 2011;26(1):35.CrossRef
[30]
Zurück zum Zitat Li X, Gao H, Uo M, Sato Y, Akasaka T, Abe S, Feng Q, Cui F, Watari F. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomed Mater. 2009;4(1):015005.CrossRef Li X, Gao H, Uo M, Sato Y, Akasaka T, Abe S, Feng Q, Cui F, Watari F. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomed Mater. 2009;4(1):015005.CrossRef
[31]
Zurück zum Zitat Li WJ, Cooper JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2(4):377.CrossRef Li WJ, Cooper JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2(4):377.CrossRef
Metadaten
Titel
Fabrication of shish-kebab-structured carbon nanotube/poly(ε-caprolactone) composite nanofibers for potential tissue engineering applications
Publikationsdatum
29.10.2017
Erschienen in
Rare Metals / Ausgabe 1/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0965-y

Weitere Artikel der Ausgabe 1/2019

Rare Metals 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.