Skip to main content
Erschienen in: Journal of Materials Science 5/2019

20.11.2018 | Composites

Fabrication of superrepellent microstructured polypropylene/graphene surfaces with enhanced wear resistance

verfasst von: Anfu Chen, Sha Ding, Junhai Huang, Jingjing Zhang, Yong Dong, Xiaoling Fu, Binqing Shi, Bin Wang, Zhengrong Zhang

Erschienen in: Journal of Materials Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabrication of biomimetic laminated polypropylene/graphene powder (PP/GP) nanocomposites by template method to form the highly structured micropillars with submicron villi on top is presented in this work. Microstructures on PP surfaces are stretched and warped by the considerable force between the PP material and microcavities in the template during demolding, changing from micropillars to micropyramids. With the addition of 9% GP, the surface adhesive force is reduced from ~ 571 to ~ 215 μN on smooth surfaces and is almost as weak as ~ 4 μN on microstructured PP/GP surfaces, contributing to the successful demolding of microstructures from microcavities. The droplet of less than 10 μL would rather adhere to the syringe needle than the microstructured PP/GP surface. Apparently, the microstructured PP/GP surface with an extremely small roll-off angle of ~ 0.5° is slippery and superhydrophobic, exhibiting lotus effect. With the ability to work under a water pressure of up to 1500 Pa, the microstructured PP/GP surface exhibits a high-efficiency self-cleaning performance by a combination of droplet bouncing and rolling behaviors. The submicron villi forming on the top of PP/GP micropillars are caused by a mild stretch. This phenomenon might be attributed to a weak adhesion between PP/GP nanocomposites and the microcavities during demolding, facilitating the formation of the sufficiently robust Cassie–Baxter state. After a 1000 mm abrasion length, the newly formed tapering microfibers increase the roughness on the top of the micropillars and help the worn microstructured surface transform to the sticky superhydrophobicity, i.e., petal effect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cao MY, Guo DW, Yu CM, Li K, Liu MJ, Jiang L (2016) Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: a brief study on the functions and applications. ACS Appl Mater Interfaces 8:3615–3623CrossRef Cao MY, Guo DW, Yu CM, Li K, Liu MJ, Jiang L (2016) Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: a brief study on the functions and applications. ACS Appl Mater Interfaces 8:3615–3623CrossRef
2.
Zurück zum Zitat Motlagh NV, Khani R, Rahnama S (2015) Super dewetting surfaces: focusing on their design and fabrication methods. Colloids Surf A Physicochem Eng Asp 484:528–546CrossRef Motlagh NV, Khani R, Rahnama S (2015) Super dewetting surfaces: focusing on their design and fabrication methods. Colloids Surf A Physicochem Eng Asp 484:528–546CrossRef
4.
Zurück zum Zitat Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394CrossRef Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394CrossRef
6.
Zurück zum Zitat Zhang P, Lv FY (2015) A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82:1068–1087CrossRef Zhang P, Lv FY (2015) A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82:1068–1087CrossRef
8.
Zurück zum Zitat Ventre M, Netti PA (2016) Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces 8(24):14896–14908CrossRef Ventre M, Netti PA (2016) Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces 8(24):14896–14908CrossRef
9.
Zurück zum Zitat Latthe SS, Sudhagar P, Devadoss A, Kumar AM, Liu SH, Terashima C, Nakata K, Fujishima AA (2015) Mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties. J Mater Chem A 3(27):14263–14271CrossRef Latthe SS, Sudhagar P, Devadoss A, Kumar AM, Liu SH, Terashima C, Nakata K, Fujishima AA (2015) Mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties. J Mater Chem A 3(27):14263–14271CrossRef
10.
Zurück zum Zitat Zhu L, Shi P, Xue J, Wang YY, Chen QM, Ding JF, Wang QJ (2014) Superhydrophobic stability of nanotube array surfaces under impact and static forces. ACS Appl Mater Interfaces 6(11):8073–8079CrossRef Zhu L, Shi P, Xue J, Wang YY, Chen QM, Ding JF, Wang QJ (2014) Superhydrophobic stability of nanotube array surfaces under impact and static forces. ACS Appl Mater Interfaces 6(11):8073–8079CrossRef
11.
Zurück zum Zitat Zhu W, Liu HT, Yan W, Chen TC (2017) The fabrication of superhydrophobic PTFE/UHMWPE composite surface by hot-pressing and texturing process. Colloids Polym Sci 295(5):759–766CrossRef Zhu W, Liu HT, Yan W, Chen TC (2017) The fabrication of superhydrophobic PTFE/UHMWPE composite surface by hot-pressing and texturing process. Colloids Polym Sci 295(5):759–766CrossRef
12.
Zurück zum Zitat Korpela T, Suvanto M, Pakkanen TT (2015) Wear and friction behavior of polyacetal surfaces with micro-structure controlled surface pressure. Wear 328:262–269CrossRef Korpela T, Suvanto M, Pakkanen TT (2015) Wear and friction behavior of polyacetal surfaces with micro-structure controlled surface pressure. Wear 328:262–269CrossRef
13.
Zurück zum Zitat Kim M, Lee SM, Lee SJ, Kim YW, Liang L, Lee DW (2017) Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. Int J Precis Eng Manuf Green Technol 4(1):27–35CrossRef Kim M, Lee SM, Lee SJ, Kim YW, Liang L, Lee DW (2017) Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. Int J Precis Eng Manuf Green Technol 4(1):27–35CrossRef
14.
Zurück zum Zitat Contraires E, Teisseire J, Sondergard E, Barthel E (2016) Wetting against the nap-how asperity inclination determines unidirectional spreading. Soft Matter 12(28):6067–6072CrossRef Contraires E, Teisseire J, Sondergard E, Barthel E (2016) Wetting against the nap-how asperity inclination determines unidirectional spreading. Soft Matter 12(28):6067–6072CrossRef
15.
Zurück zum Zitat Tricinci O, Terencio T, Mazzolai B, Pugno NM, Greco F, Mattoli V (2015) 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography. ACS Appl Mater Interfaces 7(46):25560–25567CrossRef Tricinci O, Terencio T, Mazzolai B, Pugno NM, Greco F, Mattoli V (2015) 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography. ACS Appl Mater Interfaces 7(46):25560–25567CrossRef
16.
Zurück zum Zitat Hoppe C, Mitschker F, Awakowicz P, Kirchheim D, Dahlmann R, de los Arcos T, Grundmeier G (2018) Adhesion of plasma-deposited silicon oxide barrier layers on PDMS containing polypropylene. Surf Coat Tech 335:25–31CrossRef Hoppe C, Mitschker F, Awakowicz P, Kirchheim D, Dahlmann R, de los Arcos T, Grundmeier G (2018) Adhesion of plasma-deposited silicon oxide barrier layers on PDMS containing polypropylene. Surf Coat Tech 335:25–31CrossRef
17.
Zurück zum Zitat Zhang XG, Liu ZJ, Zhang XY, Li Y, Wang HY, Wang JT, Zhu YJ (2018) High-adhesive superhydrophobic litchi-like coatings fabricated by in situ growth of nano-silica on polyethersulfone surface. Chem Eng J 343:699–707CrossRef Zhang XG, Liu ZJ, Zhang XY, Li Y, Wang HY, Wang JT, Zhu YJ (2018) High-adhesive superhydrophobic litchi-like coatings fabricated by in situ growth of nano-silica on polyethersulfone surface. Chem Eng J 343:699–707CrossRef
18.
Zurück zum Zitat Bormashenko E, Grynyov R, Chaniel G, Taitelbaum H, Bormashenko Y (2013) Robust technique allowing manufacturing superoleophobic surfaces. Appl Surf Sci 270:98–103CrossRef Bormashenko E, Grynyov R, Chaniel G, Taitelbaum H, Bormashenko Y (2013) Robust technique allowing manufacturing superoleophobic surfaces. Appl Surf Sci 270:98–103CrossRef
19.
Zurück zum Zitat Chen AF, Huang HX (2016) Rapid fabrication of t-shaped micropillars on polypropylene surfaces with robust Cassie–Baxter state for quantitative droplet collection. J Phys Chem C 120(3):1556–1561CrossRef Chen AF, Huang HX (2016) Rapid fabrication of t-shaped micropillars on polypropylene surfaces with robust Cassie–Baxter state for quantitative droplet collection. J Phys Chem C 120(3):1556–1561CrossRef
21.
Zurück zum Zitat Toosi SF, Moradi S, Ebrahimi M, Hatzikiriakos SG (2016) Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl Surf Sci 378:426–434CrossRef Toosi SF, Moradi S, Ebrahimi M, Hatzikiriakos SG (2016) Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl Surf Sci 378:426–434CrossRef
22.
Zurück zum Zitat Moore S, Gomez J, Lek D, You BH, Kim N, Song IH (2016) Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron Eng 162:57–62CrossRef Moore S, Gomez J, Lek D, You BH, Kim N, Song IH (2016) Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron Eng 162:57–62CrossRef
23.
Zurück zum Zitat Zhao LY, Zhao J, Liu YY, Guo YF, Zhang LP, Chen Z, Zhang H, Zhang Z (2016) Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability. Small 12(24):3327–3333CrossRef Zhao LY, Zhao J, Liu YY, Guo YF, Zhang LP, Chen Z, Zhang H, Zhang Z (2016) Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability. Small 12(24):3327–3333CrossRef
24.
Zurück zum Zitat Schauer S, Meier T, Reinhard M, Rohrig M, Schneider M, Heilig M, Kolew A, Worgull M, Holscher H (2016) Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing. ACS Appl Mater Interfaces 8(14):9423–9430CrossRef Schauer S, Meier T, Reinhard M, Rohrig M, Schneider M, Heilig M, Kolew A, Worgull M, Holscher H (2016) Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing. ACS Appl Mater Interfaces 8(14):9423–9430CrossRef
25.
Zurück zum Zitat Saarikoski I, Joki-Korpela F, Suvanto M, Pakkanen TT, Pakkanen TA (2012) Superhydrophobic elastomer surfaces with nanostructured micronails. Surf Sci 606(1–2):91–98CrossRef Saarikoski I, Joki-Korpela F, Suvanto M, Pakkanen TT, Pakkanen TA (2012) Superhydrophobic elastomer surfaces with nanostructured micronails. Surf Sci 606(1–2):91–98CrossRef
26.
Zurück zum Zitat Xu QF, Mondal F, Lyons AM (2011) Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Appl Mater Interfaces 3(9):3508–3514CrossRef Xu QF, Mondal F, Lyons AM (2011) Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Appl Mater Interfaces 3(9):3508–3514CrossRef
27.
Zurück zum Zitat Lu Z, Zhang KF (2009) Morphology and mechanical properties of polypropylene micro-arrays by micro-injection molding. Int J Adv Manuf Technol 40(5–6):490–496CrossRef Lu Z, Zhang KF (2009) Morphology and mechanical properties of polypropylene micro-arrays by micro-injection molding. Int J Adv Manuf Technol 40(5–6):490–496CrossRef
29.
Zurück zum Zitat Stormonth-Darling JM, Gadegaard N (2012) Injection moulding difficult nanopatterns with hybrid polymer inlays. Macromol Mater Eng 297(11):1075–1080CrossRef Stormonth-Darling JM, Gadegaard N (2012) Injection moulding difficult nanopatterns with hybrid polymer inlays. Macromol Mater Eng 297(11):1075–1080CrossRef
32.
Zurück zum Zitat Li ZY, Yang WJ, Wu YP, Wu SB, Cai ZB (2017) Role of humidity in reducing the friction of graphene layers on textured surfaces. Appl Surf Sci 403:362–370CrossRef Li ZY, Yang WJ, Wu YP, Wu SB, Cai ZB (2017) Role of humidity in reducing the friction of graphene layers on textured surfaces. Appl Surf Sci 403:362–370CrossRef
33.
Zurück zum Zitat Chih A, Anson-Casaos A, Puertolas JA (2017) Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int 116:295–302CrossRef Chih A, Anson-Casaos A, Puertolas JA (2017) Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int 116:295–302CrossRef
34.
Zurück zum Zitat Tripathi SN, Rao GSS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7(38):23615–23632CrossRef Tripathi SN, Rao GSS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7(38):23615–23632CrossRef
35.
Zurück zum Zitat Quiles-Diaz S, Enrique-Jimenez P, Papageorgiou DG, Ania F, Flores A, Kinloch IA, Gomez-Fatou MA, Young RJ, Salavagione HJ (2017) Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos Part A Appl S 100:31–39CrossRef Quiles-Diaz S, Enrique-Jimenez P, Papageorgiou DG, Ania F, Flores A, Kinloch IA, Gomez-Fatou MA, Young RJ, Salavagione HJ (2017) Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos Part A Appl S 100:31–39CrossRef
36.
Zurück zum Zitat Lv LL, Huang L, Zhu PL, Li G, Zhao T, Long JP, Sun R, Wong CP (2017) SiO2 particle-supported ultrathin graphene hybrids/polyvinylidene fluoride composites with excellent dielectric performance and energy storage density. J Mater Sci Mater Electron 28(18):13521–13531CrossRef Lv LL, Huang L, Zhu PL, Li G, Zhao T, Long JP, Sun R, Wong CP (2017) SiO2 particle-supported ultrathin graphene hybrids/polyvinylidene fluoride composites with excellent dielectric performance and energy storage density. J Mater Sci Mater Electron 28(18):13521–13531CrossRef
37.
Zurück zum Zitat Liu L, Yan F, Gai FY, Xiao LH, Shang L, Li M, Ao YH (2017) Enhanced tribological performance of PEEK/SCF/PTFE hybrid composites by graphene. RSC Adv 7(53):33450–33458CrossRef Liu L, Yan F, Gai FY, Xiao LH, Shang L, Li M, Ao YH (2017) Enhanced tribological performance of PEEK/SCF/PTFE hybrid composites by graphene. RSC Adv 7(53):33450–33458CrossRef
38.
Zurück zum Zitat Kelnar I, Kratochvil J, Kapralkova L, Zhigunov A, Nevoralova M (2017) Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater 71:271–278CrossRef Kelnar I, Kratochvil J, Kapralkova L, Zhigunov A, Nevoralova M (2017) Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater 71:271–278CrossRef
40.
Zurück zum Zitat Bafana AP, Yan XR, Wei X, Patel M, Guo ZH, Wei SY, Wujcik EK (2017) Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. Compos Part B Eng 109:101–107CrossRef Bafana AP, Yan XR, Wei X, Patel M, Guo ZH, Wei SY, Wujcik EK (2017) Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. Compos Part B Eng 109:101–107CrossRef
41.
Zurück zum Zitat Ahmad SR, Xue CZ, Young RJ (2017) The mechanisms of reinforcement of polypropylene by graphene nanoplatelets. Mater Sci Eng B 216:2–9CrossRef Ahmad SR, Xue CZ, Young RJ (2017) The mechanisms of reinforcement of polypropylene by graphene nanoplatelets. Mater Sci Eng B 216:2–9CrossRef
42.
Zurück zum Zitat Li R, Chen CB, Li J, Xu LM, Xiao GY, Yan DY (2014) A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J Mater Chem A 2(9):3057–3064CrossRef Li R, Chen CB, Li J, Xu LM, Xiao GY, Yan DY (2014) A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J Mater Chem A 2(9):3057–3064CrossRef
43.
Zurück zum Zitat Nine MJ, Cole MA, Johnson L, Tran DNH, Losic D (2015) Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl Mater Interfaces 7(51):28482–28493CrossRef Nine MJ, Cole MA, Johnson L, Tran DNH, Losic D (2015) Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl Mater Interfaces 7(51):28482–28493CrossRef
46.
Zurück zum Zitat Zeng XZ, Peng YT, Lang HJ (2017) A novel approach to decrease friction of graphene. Carbon 118:233–240CrossRef Zeng XZ, Peng YT, Lang HJ (2017) A novel approach to decrease friction of graphene. Carbon 118:233–240CrossRef
47.
Zurück zum Zitat Wu P, Li XM, Zhang CH, Chen XC, Lin SY, Sun HY, Lin CT, Zhu HW, Luo JB (2017) Self-assembled graphene film as low friction solid lubricant in macroscale contact. ACS Appl Mater Interfaces 9(25):21554–21562CrossRef Wu P, Li XM, Zhang CH, Chen XC, Lin SY, Sun HY, Lin CT, Zhu HW, Luo JB (2017) Self-assembled graphene film as low friction solid lubricant in macroscale contact. ACS Appl Mater Interfaces 9(25):21554–21562CrossRef
49.
Zurück zum Zitat Wang N, Xiong DS, Deng YL, Shi Y, Wang K (2015) Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl Mater Interfaces 7(11):6260–6272CrossRef Wang N, Xiong DS, Deng YL, Shi Y, Wang K (2015) Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl Mater Interfaces 7(11):6260–6272CrossRef
50.
Zurück zum Zitat Yildirim A, Khudiyev T, Daglar B, Budunoglu H, Okyay AK, Bayindir M (2013) Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids. ACS Appl Mater Interfaces 5(3):853–860CrossRef Yildirim A, Khudiyev T, Daglar B, Budunoglu H, Okyay AK, Bayindir M (2013) Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids. ACS Appl Mater Interfaces 5(3):853–860CrossRef
51.
Zurück zum Zitat Yin LT, Yang J, Tang YC, Chen L, Liu C, Tang H, Li CS (2014) Mechanical durability of superhydrophobic and oleophobic copper meshes. Appl Surf Sci 316:259–263CrossRef Yin LT, Yang J, Tang YC, Chen L, Liu C, Tang H, Li CS (2014) Mechanical durability of superhydrophobic and oleophobic copper meshes. Appl Surf Sci 316:259–263CrossRef
52.
Zurück zum Zitat Inuwa IM, Hassan A, Wang DY, Samsudin SA, Haafiz MKM, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stabil 110:137–148CrossRef Inuwa IM, Hassan A, Wang DY, Samsudin SA, Haafiz MKM, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stabil 110:137–148CrossRef
53.
Zurück zum Zitat Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11(4):279–284CrossRef Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11(4):279–284CrossRef
55.
Zurück zum Zitat Long JY, Fan PX, Gong DW, Jiang DF, Zhang HJ, Li L, Zhong ML (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interfaces 7(18):9858–9865CrossRef Long JY, Fan PX, Gong DW, Jiang DF, Zhang HJ, Li L, Zhong ML (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interfaces 7(18):9858–9865CrossRef
56.
Zurück zum Zitat Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460CrossRef Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460CrossRef
57.
Zurück zum Zitat Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25(5):3240–3248CrossRef Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25(5):3240–3248CrossRef
Metadaten
Titel
Fabrication of superrepellent microstructured polypropylene/graphene surfaces with enhanced wear resistance
verfasst von
Anfu Chen
Sha Ding
Junhai Huang
Jingjing Zhang
Yong Dong
Xiaoling Fu
Binqing Shi
Bin Wang
Zhengrong Zhang
Publikationsdatum
20.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3138-y

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.