Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2018

02.07.2018

Fabrication of Ta-Reinforced Cu-Based Bulk Metallic Glass Composites by High-Pressure Torsion

verfasst von: Hamed Asgharzadeh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ex situ Cu54Zr22Ti18Ni6 matrix bulk metallic glass composites (BMGCs) reinforced with Ta particles (10–30 vol.%) were fabricated by high-pressure torsion (HPT) under applied pressure of 6 GPa for 1–3 turns at temperatures of 25 or 200 °C. The densification, structure, thermal, and mechanical properties of BMGC samples were investigated by Archimedes densitometry, optical microscopy, x-ray diffraction, differential scanning calorimetry, small punch test, and microhardness measurements. Near full-density BMGC disks (relative densities higher than 0.97) are fabricated using HPT, irrespective of the processing strain and temperature. The microhardness of BMGCs is improved by increasing the number of turns, or the processing temperature due to the improvement in the deformation degree of both the amorphous and Ta particles as well as the reduction in the interlayer spacing of Ta particles. Nevertheless, there is an optimal amount of Ta which gives rise to the peak hardness in the BMGC samples, depending on the amount of imposed strain during HPT. The results of small punch test indicate that the addition of Ta to the monolithic BMG and increasing the HPT temperature significantly enhance the fracture load and deflection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48, p 279–306CrossRef A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48, p 279–306CrossRef
2.
3.
Zurück zum Zitat J. Cui, J.S. Li, J. Wang, and H.C. Kou, Microstructure Evolution and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite, J. Mater. Eng. Perform., 2015, 24, p 2354–2358CrossRef J. Cui, J.S. Li, J. Wang, and H.C. Kou, Microstructure Evolution and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite, J. Mater. Eng. Perform., 2015, 24, p 2354–2358CrossRef
4.
Zurück zum Zitat M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, and D.H. Kim, A Development of Ni-Based Alloys with Enhanced Plasticity, Intermetallics, 2004, 12, p 1133–1137CrossRef M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, and D.H. Kim, A Development of Ni-Based Alloys with Enhanced Plasticity, Intermetallics, 2004, 12, p 1133–1137CrossRef
5.
Zurück zum Zitat H.S. Kim, P.J. Warren, B. Cantor, and H.R. Lee, Mechanical Properties of Partially Crystallized Aluminum Based Amorphous Alloys, Nanostruct. Mater., 1999, 11, p 241–247CrossRef H.S. Kim, P.J. Warren, B. Cantor, and H.R. Lee, Mechanical Properties of Partially Crystallized Aluminum Based Amorphous Alloys, Nanostruct. Mater., 1999, 11, p 241–247CrossRef
6.
Zurück zum Zitat H. Kato, K. Yubuta, D.V. Louzguine, A. Inoue, and H.S. Kim, Influence of Nanoprecipitation on Strength of Cu60Zr30Ti10 Glass Containing µm-ZrC Particle Reinforcements, Scripta Mater., 2004, 51, p 577–581CrossRef H. Kato, K. Yubuta, D.V. Louzguine, A. Inoue, and H.S. Kim, Influence of Nanoprecipitation on Strength of Cu60Zr30Ti10 Glass Containing µm-ZrC Particle Reinforcements, Scripta Mater., 2004, 51, p 577–581CrossRef
7.
Zurück zum Zitat L. Liu, K.C. Chan, M. Sun, and Q. Chen, The Effect of the Addition of Ta on the Structure, Crystallization and Mechanical Properties of Zr–Cu–Ni–Al–Ta Bulk Metallic Glasses, Mater. Sci. Eng., A, 2007, 445–446, p 697–706CrossRef L. Liu, K.C. Chan, M. Sun, and Q. Chen, The Effect of the Addition of Ta on the Structure, Crystallization and Mechanical Properties of Zr–Cu–Ni–Al–Ta Bulk Metallic Glasses, Mater. Sci. Eng., A, 2007, 445–446, p 697–706CrossRef
8.
Zurück zum Zitat K. Edalati and Z. Horita, A Review on High-Pressure Torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, 2016, 652, p 325–352CrossRef K. Edalati and Z. Horita, A Review on High-Pressure Torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, 2016, 652, p 325–352CrossRef
9.
Zurück zum Zitat Z.M. Jiao, Z.H. Wang, R.F. Wu, T.W. Zhang, H.J. Yang, and J.W. Qiao, Dynamic Deformation Behaviors of an In Situ Ti-Based Metallic Glass Matrix Composite, J. Mater. Eng. Perform., 2016, 25, p 4729–4734CrossRef Z.M. Jiao, Z.H. Wang, R.F. Wu, T.W. Zhang, H.J. Yang, and J.W. Qiao, Dynamic Deformation Behaviors of an In Situ Ti-Based Metallic Glass Matrix Composite, J. Mater. Eng. Perform., 2016, 25, p 4729–4734CrossRef
10.
Zurück zum Zitat J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, “Work-Hardenable” Ductile Bulk Metallic Glass, Phys. Rev. Lett., 2005, 94, p 205501CrossRef J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, “Work-Hardenable” Ductile Bulk Metallic Glass, Phys. Rev. Lett., 2005, 94, p 205501CrossRef
11.
Zurück zum Zitat C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Lett., 2000, 84, p 2901–2904CrossRef C.C. Hays, C.P. Kim, and W.L. Johnson, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing In Situ Formed Ductile Phase Dendrite Dispersions, Phys. Rev. Lett., 2000, 84, p 2901–2904CrossRef
12.
Zurück zum Zitat P. Denisa, C.M. Meylan, C. Ebner, A.L. Greer, M. Zehetbauer, and H.-J. Fecht, Rejuvenation Decreases Shear Band Sliding Velocity in Pt-Based Metallic Glasses, Mater. Sci. Eng. A, 2017, 684, p 517–523CrossRef P. Denisa, C.M. Meylan, C. Ebner, A.L. Greer, M. Zehetbauer, and H.-J. Fecht, Rejuvenation Decreases Shear Band Sliding Velocity in Pt-Based Metallic Glasses, Mater. Sci. Eng. A, 2017, 684, p 517–523CrossRef
13.
Zurück zum Zitat P. Henits, A. Revesz, and Z. Kovacs, Free Volume Simulation for Severe Plastic Deformation of Metallic Glasses, Mech. Mater., 2012, 50, p 81–87CrossRef P. Henits, A. Revesz, and Z. Kovacs, Free Volume Simulation for Severe Plastic Deformation of Metallic Glasses, Mech. Mater., 2012, 50, p 81–87CrossRef
14.
Zurück zum Zitat S.-H. Joo, D.H. Phee, A.D. Setyawan, H. Kato, M. Janecek, Y.C. Kim, S. Lee, and H.S. Kim, Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion, Sci. Rep., 2015, 5, p 9660CrossRef S.-H. Joo, D.H. Phee, A.D. Setyawan, H. Kato, M. Janecek, Y.C. Kim, S. Lee, and H.S. Kim, Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion, Sci. Rep., 2015, 5, p 9660CrossRef
15.
Zurück zum Zitat H.S. Kim, S.I. Hong, Y.S. Lee, A.A. Dubravina, and I.V. Alexandrov, Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142, p 334–337CrossRef H.S. Kim, S.I. Hong, Y.S. Lee, A.A. Dubravina, and I.V. Alexandrov, Deformation Behavior of Copper During a High Pressure Torsion Process, J. Mater. Process. Technol., 2003, 142, p 334–337CrossRef
16.
Zurück zum Zitat X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure-Hardness Relationship in an Al-4 wt.% Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915CrossRef X. Yang, J. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure-Hardness Relationship in an Al-4 wt.% Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915CrossRef
17.
Zurück zum Zitat H. Asgharzadeh, S.H. Joo, and H.S. Kim, Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion, Metall. Mater. Trans. A, 2014, 45, p 4129–4137CrossRef H. Asgharzadeh, S.H. Joo, and H.S. Kim, Consolidation of Carbon Nanotube Reinforced Aluminum Matrix Composites by High-Pressure Torsion, Metall. Mater. Trans. A, 2014, 45, p 4129–4137CrossRef
18.
Zurück zum Zitat H. Asgharzadeh, S.H. Joo, and H.S. Kim, Al/C60 Nanocomposites Fabricated by High-Pressure Torsion, Metall. Mater. Trans. A, 2015, 46, p 1838–1842CrossRef H. Asgharzadeh, S.H. Joo, and H.S. Kim, Al/C60 Nanocomposites Fabricated by High-Pressure Torsion, Metall. Mater. Trans. A, 2015, 46, p 1838–1842CrossRef
19.
Zurück zum Zitat J.Y. Kang, J.G. Kim, H.W. Park, and H.S. Kim, Multiscale Architectured Materials with Composition and Grain Size Gradients Manufactured Using High Pressure Torsion, Sci. Rep., 2016, 6, p 26590CrossRef J.Y. Kang, J.G. Kim, H.W. Park, and H.S. Kim, Multiscale Architectured Materials with Composition and Grain Size Gradients Manufactured Using High Pressure Torsion, Sci. Rep., 2016, 6, p 26590CrossRef
20.
Zurück zum Zitat A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals And Applications, Prog. Mater Sci., 2008, 53, p 893–979CrossRef A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals And Applications, Prog. Mater Sci., 2008, 53, p 893–979CrossRef
21.
Zurück zum Zitat S.-H. Joo, D.-H. Pi, J. Guo, H. Kato, S. Lee, and H.S. Kim, Enhanced Wear Resistivity of a Zr-Based Bulk Metallic Glass Processed by High-Pressure Torsion Under Reciprocating Dry Conditions, Metal Mater. Int., 2016, 22, p 383–390CrossRef S.-H. Joo, D.-H. Pi, J. Guo, H. Kato, S. Lee, and H.S. Kim, Enhanced Wear Resistivity of a Zr-Based Bulk Metallic Glass Processed by High-Pressure Torsion Under Reciprocating Dry Conditions, Metal Mater. Int., 2016, 22, p 383–390CrossRef
22.
Zurück zum Zitat J. Vierke, G. Schumacher, V.P. Pilyugin, I.A. Denks, I. Zizak, C. Wolf, N. Wanderka, M. Wollgarten, and J. Banhart, Deformation Induced Crystallization in Amorphous Al85Ni10La5 alloy, J. Alloy. Compd., 2010, 493, p 683–691CrossRef J. Vierke, G. Schumacher, V.P. Pilyugin, I.A. Denks, I. Zizak, C. Wolf, N. Wanderka, M. Wollgarten, and J. Banhart, Deformation Induced Crystallization in Amorphous Al85Ni10La5 alloy, J. Alloy. Compd., 2010, 493, p 683–691CrossRef
23.
Zurück zum Zitat Z. Kovacs, P. Henits, A.P. Zhilyaev, and A. Revesz, Deformation Induced Primary Crystallization in a Thermally Non-Primary Crystallizing Amorphous Al85Ce8Ni5Co2 Alloy, Scripta Mater., 2006, 54, p 1733–1737CrossRef Z. Kovacs, P. Henits, A.P. Zhilyaev, and A. Revesz, Deformation Induced Primary Crystallization in a Thermally Non-Primary Crystallizing Amorphous Al85Ce8Ni5Co2 Alloy, Scripta Mater., 2006, 54, p 1733–1737CrossRef
24.
Zurück zum Zitat S. Hobor, Z. Kovacs, and A. Revesz, Effect of Accumulated Shear on the Microstructure and Morphology of Severely Deformed Cu60Zr30Ti10 Metallic Glass, J. Alloy. Compd., 2011, 509, p 8641–8648CrossRef S. Hobor, Z. Kovacs, and A. Revesz, Effect of Accumulated Shear on the Microstructure and Morphology of Severely Deformed Cu60Zr30Ti10 Metallic Glass, J. Alloy. Compd., 2011, 509, p 8641–8648CrossRef
25.
Zurück zum Zitat J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert, and M.D. Baro, Cold-Consolidation of Ball Milled Fe-Based Amorphous Ribbons by High Pressure Torsion, Scripta Mater., 2004, 50, p 1221–1225CrossRef J. Sort, D.C. Ile, A.P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert, and M.D. Baro, Cold-Consolidation of Ball Milled Fe-Based Amorphous Ribbons by High Pressure Torsion, Scripta Mater., 2004, 50, p 1221–1225CrossRef
26.
Zurück zum Zitat G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina, Nanocrystal Formation, Structure And Magnetic Properties of Fe–Si–B Amorphous Alloy After Deformation, Mater. Lett., 2013, 97, p 15–17CrossRef G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina, Nanocrystal Formation, Structure And Magnetic Properties of Fe–Si–B Amorphous Alloy After Deformation, Mater. Lett., 2013, 97, p 15–17CrossRef
27.
Zurück zum Zitat T. Czeppe, G. Korznikova, J. Morgiel, A. Korznikov, N.Q. Chinh, P. Ochin, and A. Sypien, Microstructure and Properties of Cold Consolidated Amorphous Ribbons from (NiCu)ZrTiAlSi alloys, J. Alloy. Compd., 2009, 483, p 74–77CrossRef T. Czeppe, G. Korznikova, J. Morgiel, A. Korznikov, N.Q. Chinh, P. Ochin, and A. Sypien, Microstructure and Properties of Cold Consolidated Amorphous Ribbons from (NiCu)ZrTiAlSi alloys, J. Alloy. Compd., 2009, 483, p 74–77CrossRef
28.
Zurück zum Zitat N. Van Steenberge, S. Hobor, S. Suri˜nach, A. Zhilyaev, F. Houdellier, F. Mompiou, M.D. Baro, A. Revesz, and J. Sort, Sort, Effects of Severe Plastic Deformation on the Structure And Thermo-Mechanical Properties of Zr55Cu30Al10Ni5 Bulk Metallic Glass, J. Alloy. Compd., 2010, 500, p 61–67CrossRef N. Van Steenberge, S. Hobor, S. Suri˜nach, A. Zhilyaev, F. Houdellier, F. Mompiou, M.D. Baro, A. Revesz, and J. Sort, Sort, Effects of Severe Plastic Deformation on the Structure And Thermo-Mechanical Properties of Zr55Cu30Al10Ni5 Bulk Metallic Glass, J. Alloy. Compd., 2010, 500, p 61–67CrossRef
29.
Zurück zum Zitat Y.F. Sun, H. Fujii, N. Tsuji, Y. Todaka, and M. Umemoto, Fabrication of ZrAlNiCu Bulk Metallic Glass Composites Containing Pure Copper Particles by High-Pressure Torsion, J. Alloy. Compd., 2010, 492, p 149–152CrossRef Y.F. Sun, H. Fujii, N. Tsuji, Y. Todaka, and M. Umemoto, Fabrication of ZrAlNiCu Bulk Metallic Glass Composites Containing Pure Copper Particles by High-Pressure Torsion, J. Alloy. Compd., 2010, 492, p 149–152CrossRef
30.
Zurück zum Zitat X. Sauvage, Y. Champion, R. Pippan, F. Cuvilly, L. Perrie`re, A. Akhatova, and O. Renk, Structure and Properties of a Nanoscaled Composition Modulated Metallic Glass, J. Mater. Sci., 2014, 49, p 5640–5645CrossRef X. Sauvage, Y. Champion, R. Pippan, F. Cuvilly, L. Perrie`re, A. Akhatova, and O. Renk, Structure and Properties of a Nanoscaled Composition Modulated Metallic Glass, J. Mater. Sci., 2014, 49, p 5640–5645CrossRef
31.
Zurück zum Zitat H. Asgharzadeh, S.-H. Joo, J.-K. Lee, and H.S. Kim, Consolidation of Cu-based amorphous alloy powders by high-pressure torsion, J. Mater. Sci., 2015, 50, p 3164–3174CrossRef H. Asgharzadeh, S.-H. Joo, J.-K. Lee, and H.S. Kim, Consolidation of Cu-based amorphous alloy powders by high-pressure torsion, J. Mater. Sci., 2015, 50, p 3164–3174CrossRef
32.
Zurück zum Zitat D. Meng, J. Yi, D.Q. Zhao, D.W. Ding, H.Y. Bai, M.X. Pan, and W.H. Wang, Tantalum based bulk metallic glasses, J. Non-Cryst. Solid., 2011, 357, p 1787–1790CrossRef D. Meng, J. Yi, D.Q. Zhao, D.W. Ding, H.Y. Bai, M.X. Pan, and W.H. Wang, Tantalum based bulk metallic glasses, J. Non-Cryst. Solid., 2011, 357, p 1787–1790CrossRef
33.
Zurück zum Zitat A. Slipenyuk and J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scripta Mater., 2004, 50, p 39–44CrossRef A. Slipenyuk and J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scripta Mater., 2004, 50, p 39–44CrossRef
34.
Zurück zum Zitat A. Concustell, F.O. Mear, S. Surinach, M.D. Baro, and A.L. Greer, Structural Relaxation and Rejuvenation in a Metallic Glass Induced by Shot-Peening, Philos. Mag. Lett., 2009, 89, p 831–840CrossRef A. Concustell, F.O. Mear, S. Surinach, M.D. Baro, and A.L. Greer, Structural Relaxation and Rejuvenation in a Metallic Glass Induced by Shot-Peening, Philos. Mag. Lett., 2009, 89, p 831–840CrossRef
35.
Zurück zum Zitat L. Krämer, K.S. Kormout, D. Setman, Y. Champion, and R. Pippan, Production of Bulk Metallic Glasses by Severe Plastic Deformation, Metals, 2015, 2, p 720–729CrossRef L. Krämer, K.S. Kormout, D. Setman, Y. Champion, and R. Pippan, Production of Bulk Metallic Glasses by Severe Plastic Deformation, Metals, 2015, 2, p 720–729CrossRef
36.
Zurück zum Zitat K.B. Kim, P.J. Warren, and B. Cantor, Structural Relaxation and Glass Transition Behavior of Novel (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 Alloy Developed by Equiatomic Substitution, J. Non-Cryst. Solid., 2007, 353, p 3338–3341CrossRef K.B. Kim, P.J. Warren, and B. Cantor, Structural Relaxation and Glass Transition Behavior of Novel (Ti33Zr33Hf33)50(Ni50Cu50)40Al10 Alloy Developed by Equiatomic Substitution, J. Non-Cryst. Solid., 2007, 353, p 3338–3341CrossRef
37.
Zurück zum Zitat Y.-K. Xu, H. Ma, J. Xu, and E. Ma, Mg-Based Bulk Metallic Glass Composites with Plasticity and Gigapascal Strength, Acta Mater., 2005, 53, p 1857–1866CrossRef Y.-K. Xu, H. Ma, J. Xu, and E. Ma, Mg-Based Bulk Metallic Glass Composites with Plasticity and Gigapascal Strength, Acta Mater., 2005, 53, p 1857–1866CrossRef
38.
Zurück zum Zitat B.A. Sun and W.H. Wang, The Fracture of Bulk Metallic Glasses, Prog. Mater Sci., 2015, 74, p 211–307CrossRef B.A. Sun and W.H. Wang, The Fracture of Bulk Metallic Glasses, Prog. Mater Sci., 2015, 74, p 211–307CrossRef
39.
Zurück zum Zitat K.M. Flores and R.H. Dauskardt, Local Heating Associated with Crack Tip Plasticity in Zr–Ti–Ni–Cu–Be Bulk Amorphous Metals, J. Mater. Res., 1999, 14, p 638–643CrossRef K.M. Flores and R.H. Dauskardt, Local Heating Associated with Crack Tip Plasticity in Zr–Ti–Ni–Cu–Be Bulk Amorphous Metals, J. Mater. Res., 1999, 14, p 638–643CrossRef
40.
Zurück zum Zitat Y.K. Xu and J. Xu, Ceramics Particulate Reinforced Mg65Cu20Zn5Y10 Bulk Metallic Glass Composites, Scripta Mater., 2003, 49, p 843–848CrossRef Y.K. Xu and J. Xu, Ceramics Particulate Reinforced Mg65Cu20Zn5Y10 Bulk Metallic Glass Composites, Scripta Mater., 2003, 49, p 843–848CrossRef
41.
Zurück zum Zitat G. Chen, J.L. Cheng, and C.T. Liu, Large-sized Zr-Based Bulk-Metallic-Glass Composite with Enhanced Tensile Properties, Intermetallics, 2012, 28, p 25–33CrossRef G. Chen, J.L. Cheng, and C.T. Liu, Large-sized Zr-Based Bulk-Metallic-Glass Composite with Enhanced Tensile Properties, Intermetallics, 2012, 28, p 25–33CrossRef
42.
Zurück zum Zitat R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel, Micromechanics of Deformation of Metallic-Glass–Matrix Composites from In Situ Synchrotron Strain Measurements and Finite Element Modeling, Acta Mater., 2005, 153, p 883–1893 R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel, Micromechanics of Deformation of Metallic-Glass–Matrix Composites from In Situ Synchrotron Strain Measurements and Finite Element Modeling, Acta Mater., 2005, 153, p 883–1893
43.
Zurück zum Zitat Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Ta-Particulate Reinforced Zr-Based Bulk Metallic Glass Matrix Composite with Tensile Plasticity, Scripta Mater., 2010, 62, p 278–281CrossRef Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, Ta-Particulate Reinforced Zr-Based Bulk Metallic Glass Matrix Composite with Tensile Plasticity, Scripta Mater., 2010, 62, p 278–281CrossRef
44.
Zurück zum Zitat D.H. Bae, M.H. Lee, D.H. Kim, and D.J. Sordelet, Plasticity in Ni59Zr20Ti16Si2Sn3Ni59Zr20Ti16Si2Sn3 Metallic Glass Matrix Composites Containing Brass Fibers Synthesized by Warm Extrusion of Powders, App. Phys. Lett., 2003, 83, p 2312CrossRef D.H. Bae, M.H. Lee, D.H. Kim, and D.J. Sordelet, Plasticity in Ni59Zr20Ti16Si2Sn3Ni59Zr20Ti16Si2Sn3 Metallic Glass Matrix Composites Containing Brass Fibers Synthesized by Warm Extrusion of Powders, App. Phys. Lett., 2003, 83, p 2312CrossRef
45.
Zurück zum Zitat D.G. Pan, H.F. Zhang, A.M. Wang, and Z.Q. Hu, Enhanced Plasticity in Mg-Based Bulk Metallic Glass Composite Reinforced with Ductile Nb Particles, App. Phys. Lett., 2006, 89, p 261904CrossRef D.G. Pan, H.F. Zhang, A.M. Wang, and Z.Q. Hu, Enhanced Plasticity in Mg-Based Bulk Metallic Glass Composite Reinforced with Ductile Nb Particles, App. Phys. Lett., 2006, 89, p 261904CrossRef
46.
Zurück zum Zitat J.B. Li, J.S.C. Jang, C. Li, S.R. Jian, P.H. Tsai, J.D. Hwang, J.C. Huang, and T.G. Nieh, Significant Plasticity Enhancement of ZrCu-Based Bulk Metallic Glass Composite Dispersed by In Situ and Ex Situ Ta Particles, Mater. Sci. Eng. A, 2012, 551, p 249–254CrossRef J.B. Li, J.S.C. Jang, C. Li, S.R. Jian, P.H. Tsai, J.D. Hwang, J.C. Huang, and T.G. Nieh, Significant Plasticity Enhancement of ZrCu-Based Bulk Metallic Glass Composite Dispersed by In Situ and Ex Situ Ta Particles, Mater. Sci. Eng. A, 2012, 551, p 249–254CrossRef
47.
Zurück zum Zitat H. Ma, J. Xu, and E. Ma, Mg-Based Bulk Metallic Glass Composites with Plasticity and High Strength, App. Phys. Lett., 2003, 83, p 2793CrossRef H. Ma, J. Xu, and E. Ma, Mg-Based Bulk Metallic Glass Composites with Plasticity and High Strength, App. Phys. Lett., 2003, 83, p 2793CrossRef
Metadaten
Titel
Fabrication of Ta-Reinforced Cu-Based Bulk Metallic Glass Composites by High-Pressure Torsion
verfasst von
Hamed Asgharzadeh
Publikationsdatum
02.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3473-9

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Engineering and Performance 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.