Skip to main content
Erschienen in: Journal of Materials Science 5/2019

15.11.2018 | Composites

Fabrication of well-isolated graphene and evaluation of thermoelectric performance of polyaniline–graphene composite film

verfasst von: Takuji Ube, Jun Koyanagi, Takahiro Kosaki, Kenjiro Fujimoto, Tomohiro Yokozeki, Takashi Ishiguro, Keishi Nishio

Erschienen in: Journal of Materials Science | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Camphorsulfonic acid (CSA)-doped polyaniline (PANI) and thermally reduced graphene (TRGO) composite polymer film with high thermoelectric (TE) properties were fabricated. We developed a modified Hummers method with an additional ultrasonic disruption technique to obtain well-isolated TRGO powder and well-dispersed PANI–CSA–TRGO composite polymer. Transmission electron microscope (TEM) observation, electron energy-loss spectroscopy, and Fourier transform infrared spectroscopy analyses revealed that the ultrasonic disruption process produced a well-isolated state of graphene oxide, and this state remained after a thermal reduction process. The dispersed TRGO powder was added to CSA-doped PANI composite polymer to improve its electrical conductivity (EC) properties. Addition of the well-isolated TRGO powder with high crystallinity resulted in remarkable improvement in EC without any degradation of the Seebeck coefficient (SC), which is representative of TE properties. The highest SC and EC values obtained in this study were 24 μV K−1 and 3677 S cm−1, respectively, which were observed for the 30 wt% TRGO-added PANI–CSA composite film, and the resulting power factor reached 214 μW mK−2. Well-isolated graphene with high crystallinity was fabricated using an additional ultrasonic disruption process, and well-dispersed polymer/graphene composite was also fabricated using the same sonication process. This optimized sonication process is simple but effective for improving TE properties of the composite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Graus WHJ, Voogt M, Worrell E (2007) International comparison of energy efficiency of fossil power generation. Energy Policy 35:3936–3951CrossRef Graus WHJ, Voogt M, Worrell E (2007) International comparison of energy efficiency of fossil power generation. Energy Policy 35:3936–3951CrossRef
2.
Zurück zum Zitat Seebeck TJ (1822) Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz, Abhandlugen der Deutschen Akademie der Wissenchaften zu Berlin, pp 265–373 Seebeck TJ (1822) Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz, Abhandlugen der Deutschen Akademie der Wissenchaften zu Berlin, pp 265–373
3.
Zurück zum Zitat Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRef Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRef
4.
Zurück zum Zitat Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca RatonCrossRef Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca RatonCrossRef
5.
Zurück zum Zitat Tritt TM (2005) Thermal conductivity: theory, properties, and applications. Springer, Berlin Tritt TM (2005) Thermal conductivity: theory, properties, and applications. Springer, Berlin
6.
Zurück zum Zitat Nolas GS, Sharp J, Goldsmid J (2013) Thermoelectrics: basic principles and new materials developments. Springer, Berlin Nolas GS, Sharp J, Goldsmid J (2013) Thermoelectrics: basic principles and new materials developments. Springer, Berlin
7.
Zurück zum Zitat Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem Interfac Electrochem 111:111–114CrossRef Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem Interfac Electrochem 111:111–114CrossRef
8.
Zurück zum Zitat Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580 Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580
9.
Zurück zum Zitat MacDiarmid AG (2001) “Synthetic Metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRef MacDiarmid AG (2001) “Synthetic Metals”: a novel role for organic polymers (nobel lecture). Angew Chem Int Ed 40:2581–2590CrossRef
10.
Zurück zum Zitat Xuan Y, Liu X, Desbief S et al (2010) Thermoelectric properties of conducting polymers: The case of poly(3-hexylthiophene). Phys Rev B 82:115454CrossRef Xuan Y, Liu X, Desbief S et al (2010) Thermoelectric properties of conducting polymers: The case of poly(3-hexylthiophene). Phys Rev B 82:115454CrossRef
11.
Zurück zum Zitat Dubey N, Leclerc M (2011) Conducting polymers: Efficient thermoelectric materials. J Polym Sci B Polym Phys 49:467–475CrossRef Dubey N, Leclerc M (2011) Conducting polymers: Efficient thermoelectric materials. J Polym Sci B Polym Phys 49:467–475CrossRef
12.
Zurück zum Zitat Gao C, Chen G (2016) Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos Sci Technol 124:52–70CrossRef Gao C, Chen G (2016) Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials. Compos Sci Technol 124:52–70CrossRef
13.
Zurück zum Zitat Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451CrossRef Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451CrossRef
14.
Zurück zum Zitat Yoo D, Kim J, Lee SH et al (2015) Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 3:6526–6533CrossRef Yoo D, Kim J, Lee SH et al (2015) Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. J Mater Chem A 3:6526–6533CrossRef
15.
Zurück zum Zitat Kim GH, Hwang DH, Woo SI (2012) Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Phys Chem Chem Phys 14:3530–3536CrossRef Kim GH, Hwang DH, Woo SI (2012) Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene. Phys Chem Chem Phys 14:3530–3536CrossRef
16.
Zurück zum Zitat Xu K, Chen G, Qiu D (2013) Convenient construction of poly(3,4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem A 1:12395–12399CrossRef Xu K, Chen G, Qiu D (2013) Convenient construction of poly(3,4-ethylenedioxythiophene)-graphene pie-like structure with enhanced thermoelectric performance. J Mater Chem A 1:12395–12399CrossRef
17.
Zurück zum Zitat Yan H, Kou K (2014) Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J Mater Sci Lett 49:1222–1228CrossRef Yan H, Kou K (2014) Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J Mater Sci Lett 49:1222–1228CrossRef
18.
Zurück zum Zitat Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
19.
Zurück zum Zitat Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energ Environ Eng 2:58–63 Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energ Environ Eng 2:58–63
20.
Zurück zum Zitat Yang L, Wang S, Mao J et al (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRef Yang L, Wang S, Mao J et al (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184CrossRef
21.
Zurück zum Zitat Park M-S, Wang G-X, Kang Y-M, Wexler D, Dou S-X, Liu H-K (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem 119:764–767CrossRef Park M-S, Wang G-X, Kang Y-M, Wexler D, Dou S-X, Liu H-K (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem 119:764–767CrossRef
22.
Zurück zum Zitat Cao Y, Smith P (1993) Liquid-crystalline solutions of electrically conducting polyaniline. Polymer 34:3139–3143CrossRef Cao Y, Smith P (1993) Liquid-crystalline solutions of electrically conducting polyaniline. Polymer 34:3139–3143CrossRef
23.
Zurück zum Zitat Pan W, Yang SL, Li G, Jiang JM (2005) Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites. Eur Polymer J 41:2127–2133CrossRef Pan W, Yang SL, Li G, Jiang JM (2005) Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites. Eur Polymer J 41:2127–2133CrossRef
24.
Zurück zum Zitat Chen T, Zeng B, Liu J, et al (2009) J Phys Conf. SerIOP Publishing Chen T, Zeng B, Liu J, et al (2009) J Phys Conf. SerIOP Publishing
25.
Zurück zum Zitat Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63 Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58–63
26.
Zurück zum Zitat Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469CrossRef
27.
Zurück zum Zitat Chen C, Yang Q-H, Yang Y et al (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011CrossRef Chen C, Yang Q-H, Yang Y et al (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011CrossRef
28.
Zurück zum Zitat Morimoto N, Suzuki H, Takeuchi Y et al (2017) Real-time, in situ monitoring of the oxidation of graphite: lessons learned. Chem Mater 29:2150–2156CrossRef Morimoto N, Suzuki H, Takeuchi Y et al (2017) Real-time, in situ monitoring of the oxidation of graphite: lessons learned. Chem Mater 29:2150–2156CrossRef
29.
Zurück zum Zitat Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef
30.
Zurück zum Zitat Adams PN, Laughlin PJ, Monkman AP, Kenwright AM (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 37:3411–3417CrossRef Adams PN, Laughlin PJ, Monkman AP, Kenwright AM (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 37:3411–3417CrossRef
31.
Zurück zum Zitat He W, Zhang W, Li Y, Jing X (2012) A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synth Met 162:1107–1113CrossRef He W, Zhang W, Li Y, Jing X (2012) A high concentration graphene dispersion stabilized by polyaniline nanofibers. Synth Met 162:1107–1113CrossRef
32.
Zurück zum Zitat Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2014) Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J Mat Chem A 2:11107–11113CrossRef Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2014) Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J Mat Chem A 2:11107–11113CrossRef
33.
Zurück zum Zitat Fujimoto K, Taguchi T, Yoshida S, Ito S (2014) Design of seebeck coefficient measurement probe for powder library. ACS Comb Sci 16:66–70CrossRef Fujimoto K, Taguchi T, Yoshida S, Ito S (2014) Design of seebeck coefficient measurement probe for powder library. ACS Comb Sci 16:66–70CrossRef
34.
Zurück zum Zitat Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M (2000) Graphite polyhedral crystals. Science 290:317–320CrossRef Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M (2000) Graphite polyhedral crystals. Science 290:317–320CrossRef
35.
Zurück zum Zitat Wang D-S, Chang S-Y, Chen T-S et al (2017) Stress writing textured graphite conducting wires/patterns in insulating amorphous carbon matrix as interconnects. Sci Rep 7:9727CrossRef Wang D-S, Chang S-Y, Chen T-S et al (2017) Stress writing textured graphite conducting wires/patterns in insulating amorphous carbon matrix as interconnects. Sci Rep 7:9727CrossRef
36.
Zurück zum Zitat Sun L, Fugetsu B (2013) Mass production of graphene oxide from expanded graphite. Mater Lett 109:207–210CrossRef Sun L, Fugetsu B (2013) Mass production of graphene oxide from expanded graphite. Mater Lett 109:207–210CrossRef
37.
Zurück zum Zitat Pendolino F, Armata N (2017) Graphene oxide in environmental remediation process. Springer, BerlinCrossRef Pendolino F, Armata N (2017) Graphene oxide in environmental remediation process. Springer, BerlinCrossRef
38.
Zurück zum Zitat Martin JM, Vacher B, Ponsonnet L, Dupuis V (1996) Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 65:229–238CrossRef Martin JM, Vacher B, Ponsonnet L, Dupuis V (1996) Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 65:229–238CrossRef
39.
Zurück zum Zitat Berger SD, McKenzie DR, Martin PJ (1988) EELS analysis of vacuum arc-deposited diamond-like films. Philos Mag Lett 57:285–290CrossRef Berger SD, McKenzie DR, Martin PJ (1988) EELS analysis of vacuum arc-deposited diamond-like films. Philos Mag Lett 57:285–290CrossRef
40.
Zurück zum Zitat Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Morańska M, Setkiewicz M (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16:103CrossRef Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Morańska M, Setkiewicz M (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16:103CrossRef
41.
Zurück zum Zitat Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 1:203–212CrossRef Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 1:203–212CrossRef
42.
Zurück zum Zitat Miao J, Li H, Qiu H, Wu X, Yang J (2018) Graphene/PANI hybrid film with enhanced thermal conductivity by in situ polymerization. J Mater Sci Lett 53:8855–8865CrossRef Miao J, Li H, Qiu H, Wu X, Yang J (2018) Graphene/PANI hybrid film with enhanced thermal conductivity by in situ polymerization. J Mater Sci Lett 53:8855–8865CrossRef
43.
Zurück zum Zitat Wilson NR, Pandey PA, Beanland R et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556CrossRef Wilson NR, Pandey PA, Beanland R et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556CrossRef
44.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
45.
Zurück zum Zitat Shen J, Hu Y, Shi M et al (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520CrossRef Shen J, Hu Y, Shi M et al (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520CrossRef
46.
Zurück zum Zitat Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2015) PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J Mater Chem A 3:7086–7092CrossRef Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L (2015) PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J Mater Chem A 3:7086–7092CrossRef
47.
Zurück zum Zitat Anno Y, Takeuchi M, Matsuoka M, Takei K, Akita S, Arie T (2017) Effect of defect-induced carrier scattering on the thermoelectric power of graphene. Appl Phys Lett 110:263501CrossRef Anno Y, Takeuchi M, Matsuoka M, Takei K, Akita S, Arie T (2017) Effect of defect-induced carrier scattering on the thermoelectric power of graphene. Appl Phys Lett 110:263501CrossRef
48.
Zurück zum Zitat Abad B, Alda I, Diaz-Chao P et al (2013) Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J Mater Chem A 1:10450–10457CrossRef Abad B, Alda I, Diaz-Chao P et al (2013) Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs). J Mater Chem A 1:10450–10457CrossRef
49.
Zurück zum Zitat Mitra M, Kulsi C, Chatterjee K et al (2015) Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv 5:31039–31048CrossRef Mitra M, Kulsi C, Chatterjee K et al (2015) Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. RSC Adv 5:31039–31048CrossRef
50.
Zurück zum Zitat Wang W, Zhang Q, Li J et al (2015) An efficient thermoelectric material: preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding. RSC Adv 5:8988–8995CrossRef Wang W, Zhang Q, Li J et al (2015) An efficient thermoelectric material: preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding. RSC Adv 5:8988–8995CrossRef
51.
Zurück zum Zitat Ma T, Liu Z, Wen J et al (2017) Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat Commun 8:14486CrossRef Ma T, Liu Z, Wen J et al (2017) Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. Nat Commun 8:14486CrossRef
52.
Zurück zum Zitat Marsden AJ, Papageorgiou DG, Vallés C et al (2018) Electrical percolation in graphene–polymer composites, 2D. Materials 5:032003 Marsden AJ, Papageorgiou DG, Vallés C et al (2018) Electrical percolation in graphene–polymer composites, 2D. Materials 5:032003
53.
Zurück zum Zitat Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35:1087–1092CrossRef Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q (2014) Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos 35:1087–1092CrossRef
54.
Zurück zum Zitat Rakibul I, Roch C-Y-K, Jean-François B et al (2014) Transport and thermoelectric properties of polyaniline/reduced graphene oxide nanocomposites. Nanotechnology 25:475705CrossRef Rakibul I, Roch C-Y-K, Jean-François B et al (2014) Transport and thermoelectric properties of polyaniline/reduced graphene oxide nanocomposites. Nanotechnology 25:475705CrossRef
Metadaten
Titel
Fabrication of well-isolated graphene and evaluation of thermoelectric performance of polyaniline–graphene composite film
verfasst von
Takuji Ube
Jun Koyanagi
Takahiro Kosaki
Kenjiro Fujimoto
Tomohiro Yokozeki
Takashi Ishiguro
Keishi Nishio
Publikationsdatum
15.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3129-z

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Science 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.