Skip to main content

2022 | OriginalPaper | Buchkapitel

7. Fabrication Strategy

verfasst von : Sanjay Kumar

Erschienen in: Additive Manufacturing Solutions

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) provides solutions, but how much hard work is required to have those solutions—there comes a moment when creativity flows and solutions come with ease, the chapter enlists some of those moments.
AM makes complex products, therefore expectation from AM is high. AM cannot be improved overnight to fulfill the expectation—what can be the right strategy to maximize its efficacy. The chapter relies on a substrate and a combination of AM systems to ease the burden. Support structure is the side product of AM, its concept is given.
Answers of three questions related to creativity, support structure, and product fabrication strategy are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ituarte, I. F., Coatanea, E., Salmi, M., et al. (2015). Additive manufacturing in production: A study case applying technical requirements. Phy Procedia, 78, 357–366.CrossRef Ituarte, I. F., Coatanea, E., Salmi, M., et al. (2015). Additive manufacturing in production: A study case applying technical requirements. Phy Procedia, 78, 357–366.CrossRef
2.
Zurück zum Zitat Diegel, O., Schutte, J., Ferreira, A., & Chan, Y. L. (2020). Design for additive manufacturing process for a lightweight hydraulic manifold. Additive Manufacturing, 36, 101446.CrossRef Diegel, O., Schutte, J., Ferreira, A., & Chan, Y. L. (2020). Design for additive manufacturing process for a lightweight hydraulic manifold. Additive Manufacturing, 36, 101446.CrossRef
3.
Zurück zum Zitat Didier, P., Le Coz, G., Robin, G., et al. (2021). Consideration of SLM additive manufacturing supports on the stability of flexible structures in finish milling. Journal of Manufacturing Processes, 62, 213–220.CrossRef Didier, P., Le Coz, G., Robin, G., et al. (2021). Consideration of SLM additive manufacturing supports on the stability of flexible structures in finish milling. Journal of Manufacturing Processes, 62, 213–220.CrossRef
4.
Zurück zum Zitat Martin, J., Yahata, B., Hundley, J., et al. (2017). 3D printing of high-strength aluminium alloys. Nature, 549, 365–369.CrossRef Martin, J., Yahata, B., Hundley, J., et al. (2017). 3D printing of high-strength aluminium alloys. Nature, 549, 365–369.CrossRef
5.
Zurück zum Zitat Nelson, J., Berlin, A., Menold, J., & Parkinson, M. (2020). The role of digital prototyping tools in learning factories. Procedia Manuf, 45, 528–533.CrossRef Nelson, J., Berlin, A., Menold, J., & Parkinson, M. (2020). The role of digital prototyping tools in learning factories. Procedia Manuf, 45, 528–533.CrossRef
6.
Zurück zum Zitat Diegel, O., et al. (2019). A practical guide to Design for Additive Manufacturing. Springer series in advanced manufacturing. Singapore: Springer.CrossRef Diegel, O., et al. (2019). A practical guide to Design for Additive Manufacturing. Springer series in advanced manufacturing. Singapore: Springer.CrossRef
7.
Zurück zum Zitat Friesike, S., Flath, C. M., Wirth, M., & Thiesse, F. (2019). Creativity and productivity in product design for additive manufacturing: Mechanisms and platform outcomes of remixing. Journal of Operations Management, 65, 735–752.CrossRef Friesike, S., Flath, C. M., Wirth, M., & Thiesse, F. (2019). Creativity and productivity in product design for additive manufacturing: Mechanisms and platform outcomes of remixing. Journal of Operations Management, 65, 735–752.CrossRef
8.
Zurück zum Zitat Gäumann, M., Bezençon, C., Canalis, P., & Kurz, W. (2001). Single-crystal laser deposition of superalloys: Processing–microstructure maps. Acta Materialia, 49(6), 1051–1062.CrossRef Gäumann, M., Bezençon, C., Canalis, P., & Kurz, W. (2001). Single-crystal laser deposition of superalloys: Processing–microstructure maps. Acta Materialia, 49(6), 1051–1062.CrossRef
9.
Zurück zum Zitat Sreeramagiri, P., Bhagavatam, A., Alrehaili, H., & Dinda, G. (2020). Direct laser metal deposition of René 108 single crystal superalloy. J Alloy Compd, 838, 155634.CrossRef Sreeramagiri, P., Bhagavatam, A., Alrehaili, H., & Dinda, G. (2020). Direct laser metal deposition of René 108 single crystal superalloy. J Alloy Compd, 838, 155634.CrossRef
10.
Zurück zum Zitat Blok, L. G., Longana, M. L., Yu, H., & Woods, B. K. S. (2018). An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing, 22, 176–186.CrossRef Blok, L. G., Longana, M. L., Yu, H., & Woods, B. K. S. (2018). An investigation into 3D printing of fibre reinforced thermoplastic composites. Additive Manufacturing, 22, 176–186.CrossRef
11.
Zurück zum Zitat Xu, Y., Wang, Z., Gong, S., & Chen, Y. (2021). Reusable support for additive manufacturing. Additive Manufacturing, 39, 101840.CrossRef Xu, Y., Wang, Z., Gong, S., & Chen, Y. (2021). Reusable support for additive manufacturing. Additive Manufacturing, 39, 101840.CrossRef
12.
Zurück zum Zitat Chou, YS., & Cooper, K. (2017). Systems and methods for designing and fabricating contact-free support structures for overhang geometries of parts in powder-bed metal additive manufacturing. US patent 9767224. Chou, YS., & Cooper, K. (2017). Systems and methods for designing and fabricating contact-free support structures for overhang geometries of parts in powder-bed metal additive manufacturing. US patent 9767224.
13.
Zurück zum Zitat Calignano, F. (2014). Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Materials and Design, 64, 203–213.CrossRef Calignano, F. (2014). Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Materials and Design, 64, 203–213.CrossRef
14.
Zurück zum Zitat Cheng, B., & Chou, K. (2015). Geometric consideration of support structures in part overhang fabrications by electron beam additive manufacturing. Computer-Aided Design, 69, 102–111.CrossRef Cheng, B., & Chou, K. (2015). Geometric consideration of support structures in part overhang fabrications by electron beam additive manufacturing. Computer-Aided Design, 69, 102–111.CrossRef
15.
Zurück zum Zitat Zhao, G., Zhou, C., & Das, S. (2015). Solid mechanics based design and optimization for support structure generation in Stereolithography based additive manufacturing. In Volume 1A: 35th Computers and Information in Engineering Conference. Zhao, G., Zhou, C., & Das, S. (2015). Solid mechanics based design and optimization for support structure generation in Stereolithography based additive manufacturing. In Volume 1A: 35th Computers and Information in Engineering Conference.
16.
Zurück zum Zitat Lušić, M., Feuerstein, F., Morina, D., & Hornfeck, R. (2016). Fluid-based removal of inner support structures manufactured by fused deposition modeling: An investigation on factors of influence. Procedia CIRP, 41, 1033–1038.CrossRef Lušić, M., Feuerstein, F., Morina, D., & Hornfeck, R. (2016). Fluid-based removal of inner support structures manufactured by fused deposition modeling: An investigation on factors of influence. Procedia CIRP, 41, 1033–1038.CrossRef
17.
Zurück zum Zitat Bobbio, L. D., Qin, S., Dunbar, A., et al. (2017). Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4V. Additive Manufacturing, 14, 60–68.CrossRef Bobbio, L. D., Qin, S., Dunbar, A., et al. (2017). Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4V. Additive Manufacturing, 14, 60–68.CrossRef
18.
Zurück zum Zitat Vaissier, B., Pernot, J. P., Chougrani, L., & Véron, P. (2019). Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. Computer-Aided Design, 110, 11–23.CrossRef Vaissier, B., Pernot, J. P., Chougrani, L., & Véron, P. (2019). Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. Computer-Aided Design, 110, 11–23.CrossRef
19.
Zurück zum Zitat McConaha, M., Venugopal, V., & Anand, S. (2020). Integration of machine tool accessibility of support structures with topology optimization for additive manufacturing. Procedia Manuf, 48, 634–642.CrossRef McConaha, M., Venugopal, V., & Anand, S. (2020). Integration of machine tool accessibility of support structures with topology optimization for additive manufacturing. Procedia Manuf, 48, 634–642.CrossRef
20.
Zurück zum Zitat Ni, F., Wang, G., & Zhao, H. (2017). Fabrication of water-soluble poly(vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application. J Appl Poly Sci, 134, 44966. Ni, F., Wang, G., & Zhao, H. (2017). Fabrication of water-soluble poly(vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application. J Appl Poly Sci, 134, 44966.
21.
Zurück zum Zitat Wei, C., Chueh, Y., Zhang, X., et al. (2019). Easy-to-remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion. ASME J Manuf Sci Eng, 141(7), 071002.CrossRef Wei, C., Chueh, Y., Zhang, X., et al. (2019). Easy-to-remove composite support material and procedure in additive manufacturing of metallic components using multiple material laser-based powder bed fusion. ASME J Manuf Sci Eng, 141(7), 071002.CrossRef
22.
Zurück zum Zitat Chan, Y. L., Diegel, O., & Xu, X. (2021). A machined substrate hybrid additive manufacturing strategy for injection moulding inserts. International Journal of Advanced Manufacturing Technology, 112, 577–588.CrossRef Chan, Y. L., Diegel, O., & Xu, X. (2021). A machined substrate hybrid additive manufacturing strategy for injection moulding inserts. International Journal of Advanced Manufacturing Technology, 112, 577–588.CrossRef
23.
Zurück zum Zitat Bambach, M., Sizova, I., Sydow, B., et al. (2020). Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. Journal of Materials Processing Technology, 282, 116689.CrossRef Bambach, M., Sizova, I., Sydow, B., et al. (2020). Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. Journal of Materials Processing Technology, 282, 116689.CrossRef
24.
Zurück zum Zitat Silva, M., Felismina, R., Mateus, A., et al. (2017). Application of a hybrid additive manufacturing methodology to produce a metal/polymer customized dental implant. Procedia Manuf, 12, 150–155.CrossRef Silva, M., Felismina, R., Mateus, A., et al. (2017). Application of a hybrid additive manufacturing methodology to produce a metal/polymer customized dental implant. Procedia Manuf, 12, 150–155.CrossRef
25.
Zurück zum Zitat Godec, M., Malej, S., Feizpour, D., et al. (2021). Hybrid additive manufacturing of Inconel 718 for future space applications. Materials Characterization, 172, 110842.CrossRef Godec, M., Malej, S., Feizpour, D., et al. (2021). Hybrid additive manufacturing of Inconel 718 for future space applications. Materials Characterization, 172, 110842.CrossRef
26.
Zurück zum Zitat Merklein, M., Junker, D., Schaub, A., & Neubauer, F. (2016). Hybrid additive manufacturing technologies – An analysis regarding potentials and applications. Phy Procedia, 83, 549–559.CrossRef Merklein, M., Junker, D., Schaub, A., & Neubauer, F. (2016). Hybrid additive manufacturing technologies – An analysis regarding potentials and applications. Phy Procedia, 83, 549–559.CrossRef
27.
Zurück zum Zitat Watschke, H., Waalkes, L., Schumacher, C., & Vietor, T. (2018). Development of novel test specimens for characterization of multi-material parts manufactured by material extrusion. Applied Sciences, 8(8), 1220.CrossRef Watschke, H., Waalkes, L., Schumacher, C., & Vietor, T. (2018). Development of novel test specimens for characterization of multi-material parts manufactured by material extrusion. Applied Sciences, 8(8), 1220.CrossRef
28.
Zurück zum Zitat Volpato, N., Kretschek, D., Foggiatto, J., & Cruz, C. (2015). Experimental analysis of an extrusion system for additive manufacturing based on polymer pellets. International Journal of Advanced Manufacturing Technology, 81(9), 1–13. Volpato, N., Kretschek, D., Foggiatto, J., & Cruz, C. (2015). Experimental analysis of an extrusion system for additive manufacturing based on polymer pellets. International Journal of Advanced Manufacturing Technology, 81(9), 1–13.
29.
Zurück zum Zitat Kishore, V., Ajinjeru, C., Nycz, A., et al. (2017). Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Additive Manufacturing, 14, 7–12.CrossRef Kishore, V., Ajinjeru, C., Nycz, A., et al. (2017). Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Additive Manufacturing, 14, 7–12.CrossRef
30.
Zurück zum Zitat Yin, S., Cavaliere, P., Aldwell, B., et al. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.CrossRef Yin, S., Cavaliere, P., Aldwell, B., et al. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.CrossRef
31.
Zurück zum Zitat Paul, C. P., Mishra, S. K., Kumar, A., & Kukreja, L. M. (2013). Laser rapid manufacturing on vertical surfaces: Analytical and experimental studies. Surface and Coating Technology, 224, 18–28.CrossRef Paul, C. P., Mishra, S. K., Kumar, A., & Kukreja, L. M. (2013). Laser rapid manufacturing on vertical surfaces: Analytical and experimental studies. Surface and Coating Technology, 224, 18–28.CrossRef
32.
Zurück zum Zitat Xie, X., Ma, Y., Chen, C., et al. (2020). Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder. J Alloy Compound, 819, 152962.CrossRef Xie, X., Ma, Y., Chen, C., et al. (2020). Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder. J Alloy Compound, 819, 152962.CrossRef
33.
Zurück zum Zitat Biondani, F. G., Bissacco, G., Mohanty, S., et al. (2020). Multi-metal additive manufacturing process chain for optical quality mold generation. Journal of Materials Processing Technology, 277, 116451.CrossRef Biondani, F. G., Bissacco, G., Mohanty, S., et al. (2020). Multi-metal additive manufacturing process chain for optical quality mold generation. Journal of Materials Processing Technology, 277, 116451.CrossRef
Metadaten
Titel
Fabrication Strategy
verfasst von
Sanjay Kumar
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-80783-2_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.