Skip to main content

2013 | OriginalPaper | Buchkapitel

2. Fabrication Techniques and Properties of Scaffolds

verfasst von : Naznin Sultana

Erschienen in: Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of porous materials for use as scaffolds for the sustained 3D growth of tissue is a fast growing area in TE that has attracted commercial interest to a large extent. To fabricate both polymer scaffold and composite scaffold, many techniques are available. By using proper technique, the porous structure of polymeric and composite scaffolds could be controlled by varying the processing or formulation parameters. It is often necessary to modify the surface properties of biomaterials without changing the bulk attributes as a biomaterial rarely possess good surface characteristics suitable for bone tissue engineering. This chapter reviews the various existing methodologies to fabricate scaffolds and to modify the surface properties of scaffolds. It also discusses the study of interactions between tissues and biomaterials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144CrossRef Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144CrossRef
Zurück zum Zitat Anderson JM (1995) Perspectives on the in vivo responses of biodegradable polymers. In: Hollinger JO (ed) Biomedical applications of synthetic biodegradable polymers. CRC Press, Boca Raton Anderson JM (1995) Perspectives on the in vivo responses of biodegradable polymers. In: Hollinger JO (ed) Biomedical applications of synthetic biodegradable polymers. CRC Press, Boca Raton
Zurück zum Zitat Balasubramanian V, Grusin NK, Bucher RW, Turitto VT, Slack SM (1999) Residence-time dependent changes in fibrinogen adsorbed to polymeric biomaterials. J Biomed Mater Res 44(3):253–260CrossRef Balasubramanian V, Grusin NK, Bucher RW, Turitto VT, Slack SM (1999) Residence-time dependent changes in fibrinogen adsorbed to polymeric biomaterials. J Biomed Mater Res 44(3):253–260CrossRef
Zurück zum Zitat Burkersroda FV, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231CrossRef Burkersroda FV, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231CrossRef
Zurück zum Zitat Chen Y (2006) Developing bioactive composite scaffolds for bone tissue engineering. Health technology and informatics. PhD thesis, The Hong Kong Polytechnic University Chen Y (2006) Developing bioactive composite scaffolds for bone tissue engineering. Health technology and informatics. PhD thesis, The Hong Kong Polytechnic University
Zurück zum Zitat Chen VJ, Ma PX (2005) Scaffolding in tissue engineering. In: Ma PX, Elisseeff JH (eds) Taylor & Francis, Boca Raton, p xvi, p 638 Chen VJ, Ma PX (2005) Scaffolding in tissue engineering. In: Ma PX, Elisseeff JH (eds) Taylor & Francis, Boca Raton, p xvi, p 638
Zurück zum Zitat Chen Y, Mak AFT, Wang M, Li J, Wong MS (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Tech 201(3–4):575–580CrossRef Chen Y, Mak AFT, Wang M, Li J, Wong MS (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Tech 201(3–4):575–580CrossRef
Zurück zum Zitat Cheng Z, Teoh SH (2004) Surface modification of ultra thin poly (caprolactone) films using acrylic acid and collagen. Biomaterials 25(11):1991–2001CrossRef Cheng Z, Teoh SH (2004) Surface modification of ultra thin poly (caprolactone) films using acrylic acid and collagen. Biomaterials 25(11):1991–2001CrossRef
Zurück zum Zitat Cheng S, Wu Q, Yang F, Xu M, Leski M, Chen GQ (2005) Influence of dl-B-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromolecules 6(2):593–597CrossRef Cheng S, Wu Q, Yang F, Xu M, Leski M, Chen GQ (2005) Influence of dl-B-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromolecules 6(2):593–597CrossRef
Zurück zum Zitat Chu CC (1995) Degradation and biocompatibility of synthetic absorbable suture materials: general biodegradation phenomena and some factors affecting biodegradation. In: Hollinger JO (ed) Biomedical applications of synthetic biodegradable polymers. CRC Press, Boca Raton, p 247 Chu CC (1995) Degradation and biocompatibility of synthetic absorbable suture materials: general biodegradation phenomena and some factors affecting biodegradation. In: Hollinger JO (ed) Biomedical applications of synthetic biodegradable polymers. CRC Press, Boca Raton, p 247
Zurück zum Zitat Crank J (1979) The mathematics of diffusion [Eng]. Clarendon Press, Oxford Crank J (1979) The mathematics of diffusion [Eng]. Clarendon Press, Oxford
Zurück zum Zitat Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym Sci 251(11):980–990 Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym Sci 251(11):980–990
Zurück zum Zitat Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(-lactic acid) size-dependence. Biomaterials 16(4):305–311CrossRef Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(-lactic acid) size-dependence. Biomaterials 16(4):305–311CrossRef
Zurück zum Zitat Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402CrossRef Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402CrossRef
Zurück zum Zitat Hu Y, Grainger DW, Winn SR, Hollinger JO (2002) Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems. J Biomed Mater Res 59(3):563–572CrossRef Hu Y, Grainger DW, Winn SR, Hollinger JO (2002) Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems. J Biomed Mater Res 59(3):563–572CrossRef
Zurück zum Zitat Hua FJ, Kim GE, Lee JD, Son YK, Lee DS (2002) Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA-dioxane-water system. J Biomed Mater Res 63(2):161–167CrossRef Hua FJ, Kim GE, Lee JD, Son YK, Lee DS (2002) Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA-dioxane-water system. J Biomed Mater Res 63(2):161–167CrossRef
Zurück zum Zitat Kumarasuriyar A, Jackson RA, Grondahl L, Trau M, Nurcombe V, Cool SM (2005) Poly(hydroxybutyrate-co-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng 11(7–8):1281–1295CrossRef Kumarasuriyar A, Jackson RA, Grondahl L, Trau M, Nurcombe V, Cool SM (2005) Poly(hydroxybutyrate-co-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng 11(7–8):1281–1295CrossRef
Zurück zum Zitat Lam KH, Nieuwenhuis P, Molenaar I, Esselbrugge H, Feijen J, Dijkstra PJ, Schakenraad JM (1994) Biodegradation of porous versus non-porous poly(L-lactic acid) films. J Mater Sci Mater Med 5(4):181–189CrossRef Lam KH, Nieuwenhuis P, Molenaar I, Esselbrugge H, Feijen J, Dijkstra PJ, Schakenraad JM (1994) Biodegradation of porous versus non-porous poly(L-lactic acid) films. J Mater Sci Mater Med 5(4):181–189CrossRef
Zurück zum Zitat Lanza RP, Langer RS, Vacanti J (2007) Principles of tissue engineering. Elsevier/Academic Press, Amsterdam Lanza RP, Langer RS, Vacanti J (2007) Principles of tissue engineering. Elsevier/Academic Press, Amsterdam
Zurück zum Zitat Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(l-lactide): VII. In vivo and in vitro degradation. Biomaterials 8(4):311–314CrossRef Leenslag JW, Pennings AJ, Bos RRM, Rozema FR, Boering G (1987) Resorbable materials of poly(l-lactide): VII. In vivo and in vitro degradation. Biomaterials 8(4):311–314CrossRef
Zurück zum Zitat Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48(3):342–353CrossRef Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48(3):342–353CrossRef
Zurück zum Zitat Li S (2006) Degradation of biodegradable aliphatic polyesters. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. Taylor & Francis, Boca Raton Li S (2006) Degradation of biodegradable aliphatic polyesters. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. Taylor & Francis, Boca Raton
Zurück zum Zitat Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1(4):198–206CrossRef Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci Mater Med 1(4):198–206CrossRef
Zurück zum Zitat Li SM, Espartero JL, Foch P, Vert M (1997) Structural characterization and hydrolytic degradation of a Zn metal initiated copolymer of L-lactide and -caprolactone. J Biomater Sci Poly Ed 8:165–187CrossRef Li SM, Espartero JL, Foch P, Vert M (1997) Structural characterization and hydrolytic degradation of a Zn metal initiated copolymer of L-lactide and -caprolactone. J Biomater Sci Poly Ed 8:165–187CrossRef
Zurück zum Zitat Liggins RT, Burt HM (2001) Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222(1):19–33CrossRef Liggins RT, Burt HM (2001) Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222(1):19–33CrossRef
Zurück zum Zitat Lin HR, Kuo CJ, Yang CY, Shaw SY, Wu YJ (2002) Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives. J Biomed Mater Res 63(3):271–279CrossRef Lin HR, Kuo CJ, Yang CY, Shaw SY, Wu YJ (2002) Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives. J Biomed Mater Res 63(3):271–279CrossRef
Zurück zum Zitat Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1(1):15–28CrossRef Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1(1):15–28CrossRef
Zurück zum Zitat Lutton C, Read J, Trau M (2001) Nanostructured biomaterials: a novel approach to artificial bone implants. Aust J Chem 55:621–623CrossRef Lutton C, Read J, Trau M (2001) Nanostructured biomaterials: a novel approach to artificial bone implants. Aust J Chem 55:621–623CrossRef
Zurück zum Zitat Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef
Zurück zum Zitat Mainil-Varlet P, Curtis R, Gogolewski S (1997) Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. J Biomed Mater Res 36(3):360–380CrossRef Mainil-Varlet P, Curtis R, Gogolewski S (1997) Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides. J Biomed Mater Res 36(3):360–380CrossRef
Zurück zum Zitat Maulding HV, Tice TR, Cowsar DR, Fong JW, Pearson JE, Nazareno JP (1986) Biodegradable microcapsules: acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament. J Controlled Release 3(1–4):103–117CrossRef Maulding HV, Tice TR, Cowsar DR, Fong JW, Pearson JE, Nazareno JP (1986) Biodegradable microcapsules: acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament. J Controlled Release 3(1–4):103–117CrossRef
Zurück zum Zitat Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15(1):55–58CrossRef Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15(1):55–58CrossRef
Zurück zum Zitat Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422CrossRef Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422CrossRef
Zurück zum Zitat Ong JL, Lucas LC (1998) Auger electron spectroscopy and its use for the characterization of titanium and hydroxyapatite surfaces. Biomaterials 19(4–5):455–464CrossRef Ong JL, Lucas LC (1998) Auger electron spectroscopy and its use for the characterization of titanium and hydroxyapatite surfaces. Biomaterials 19(4–5):455–464CrossRef
Zurück zum Zitat Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28(31):4600–4607CrossRef Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28(31):4600–4607CrossRef
Zurück zum Zitat Pavlin D, Dove SB, Zadro R, Gluhak-Heinrich J (2000) Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif Tissue Int 67(2):163–172CrossRef Pavlin D, Dove SB, Zadro R, Gluhak-Heinrich J (2000) Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes. Calcif Tissue Int 67(2):163–172CrossRef
Zurück zum Zitat Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt S (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Polym Chem 42(3):624–638CrossRef Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt S (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Polym Chem 42(3):624–638CrossRef
Zurück zum Zitat Pitt CG, Zhong-wei G (1987) Modification of the rates of chain cleavage of poly(caprolactone) and related polyesters in the solid state. J Controlled Release 4(4):283–292CrossRef Pitt CG, Zhong-wei G (1987) Modification of the rates of chain cleavage of poly(caprolactone) and related polyesters in the solid state. J Controlled Release 4(4):283–292CrossRef
Zurück zum Zitat Pitt GG, Gratzl MM, Kimmel GL, Surles J, Sohindler A (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (caprolactone), and their copolymers in vivo. Biomaterials 2(4):215–220CrossRef Pitt GG, Gratzl MM, Kimmel GL, Surles J, Sohindler A (1981) Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (caprolactone), and their copolymers in vivo. Biomaterials 2(4):215–220CrossRef
Zurück zum Zitat Pittenger MF (2001) When the body can’t heal itself. Nature 414(6859):132CrossRef Pittenger MF (2001) When the body can’t heal itself. Nature 414(6859):132CrossRef
Zurück zum Zitat Rea SM, Brooks RA, Best SM, Kokubo T, Bonfield W (2004) Proliferation and differentiation of osteoblast-like cells on apatite-wollastonite/polyethylene composites. Biomaterials 25(18):4503–4512CrossRef Rea SM, Brooks RA, Best SM, Kokubo T, Bonfield W (2004) Proliferation and differentiation of osteoblast-like cells on apatite-wollastonite/polyethylene composites. Biomaterials 25(18):4503–4512CrossRef
Zurück zum Zitat Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery—poly(glycolic)/poly(iactic acid) homo and copolymers: 2. in vitro degradation. Polymer 22(4):494–498CrossRef Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery—poly(glycolic)/poly(iactic acid) homo and copolymers: 2. in vitro degradation. Polymer 22(4):494–498CrossRef
Zurück zum Zitat Rivard CH, Chaput CJ, DesRosiers EA, Yahia LH, Selmani A (1995) Fibroblast seeding and culture in biodegradable porous substrates. J Appl Biomat 6(1):65–68CrossRef Rivard CH, Chaput CJ, DesRosiers EA, Yahia LH, Selmani A (1995) Fibroblast seeding and culture in biodegradable porous substrates. J Appl Biomat 6(1):65–68CrossRef
Zurück zum Zitat Santos AR, Ferreira BMP, Duek EAR, Dolder H, Wada RS, Wada MLF (2004) Differentiation pattern of vero cells cultured on poly(l-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) blends. Artif Organs 28(4):381–389CrossRef Santos AR, Ferreira BMP, Duek EAR, Dolder H, Wada RS, Wada MLF (2004) Differentiation pattern of vero cells cultured on poly(l-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) blends. Artif Organs 28(4):381–389CrossRef
Zurück zum Zitat Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH (2007) In vitro biocompatibility evaluation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer in fibroblast cells. J Biomed Mater Res Part A 81A(2):317–325CrossRef Siew EL, Rajab NF, Osman AB, Sudesh K, Inayat-Hussain SH (2007) In vitro biocompatibility evaluation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer in fibroblast cells. J Biomed Mater Res Part A 81A(2):317–325CrossRef
Zurück zum Zitat Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering science, process, applications. Butterworth-Heinemann, Oxford Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering science, process, applications. Butterworth-Heinemann, Oxford
Zurück zum Zitat Smallman RE, Ngan AHW (2007) Physical metallurgy and advanced materials. Butterworth-Heinemann, Elsevier, Amsterdam Smallman RE, Ngan AHW (2007) Physical metallurgy and advanced materials. Butterworth-Heinemann, Elsevier, Amsterdam
Zurück zum Zitat Spenlehauer G, Vert M, Benoit JP, Boddaert A (1989) In vitro and In vivo degradation of poly(D, L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials 10(8):557–563CrossRef Spenlehauer G, Vert M, Benoit JP, Boddaert A (1989) In vitro and In vivo degradation of poly(D, L lactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials 10(8):557–563CrossRef
Zurück zum Zitat Tang L, Eaton JW (1995) Inflammatory responses to biomterials. Am J Clin Path 103(4):466–471 Tang L, Eaton JW (1995) Inflammatory responses to biomterials. Am J Clin Path 103(4):466–471
Zurück zum Zitat Tang L, Lucas AH, Eaton JW (1993) Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin. J Lab Clin Med 122(3):292–300 Tang L, Lucas AH, Eaton JW (1993) Inflammatory responses to implanted polymeric biomaterials: role of surface-adsorbed immunoglobulin. J Lab Clin Med 122(3):292–300
Zurück zum Zitat Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1996) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomat Sci Poly Ed 7:23–38CrossRef Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1996) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomat Sci Poly Ed 7:23–38CrossRef
Zurück zum Zitat Tong HW, Wang M, Li ZY, Lu WW (2010) Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed Mater 5(054111) 13 Tong HW, Wang M, Li ZY, Lu WW (2010) Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles. Biomed Mater 5(054111) 13
Zurück zum Zitat Tsuji H (2008) Degradation of poly (lactide)-based biodegradable materials. Nova Science Publishers, New York Tsuji H (2008) Degradation of poly (lactide)-based biodegradable materials. Nova Science Publishers, New York
Zurück zum Zitat Verheyen CCPM, Klein CPAT, Blieck-Hogervorst JMA, Wolke JGC, Blitterswijn CA, Groot K (1993) Evaluation of hydroxylapatite/poly(l-lactide) composites: physico-chemical properties. J Mat Sci Mater Med 4(1):58–65CrossRef Verheyen CCPM, Klein CPAT, Blieck-Hogervorst JMA, Wolke JGC, Blitterswijn CA, Groot K (1993) Evaluation of hydroxylapatite/poly(l-lactide) composites: physico-chemical properties. J Mat Sci Mater Med 4(1):58–65CrossRef
Zurück zum Zitat Vert M, Li S (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Controlled Release 16(1–2):15–26CrossRef Vert M, Li S (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Controlled Release 16(1–2):15–26CrossRef
Zurück zum Zitat Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51(3):475–483CrossRef Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51(3):475–483CrossRef
Zurück zum Zitat Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757CrossRef Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19):4749–4757CrossRef
Zurück zum Zitat Weir N, Buchanan F, Orr J, Dickson G (2004) Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc Ins Mech Eng, Part H: J Eng Med 218(5):307–319CrossRef Weir N, Buchanan F, Orr J, Dickson G (2004) Degradation of poly-L-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc Ins Mech Eng, Part H: J Eng Med 218(5):307–319CrossRef
Zurück zum Zitat Whang K, Healy KE (2002) Processing of polymer scaffolds: freeze-drying. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, San Diego, p xli, p 1285 Whang K, Healy KE (2002) Processing of polymer scaffolds: freeze-drying. In: Atala A, Lanza RP (eds) Methods of tissue engineering. Academic Press, San Diego, p xli, p 1285
Zurück zum Zitat Whang K, Thomas CH, Healy KE, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837–842CrossRef Whang K, Thomas CH, Healy KE, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837–842CrossRef
Zurück zum Zitat Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. tissue engineering. Int J Bio Macromol 25(1–3):111–121 Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. tissue engineering. Int J Bio Macromol 25(1–3):111–121
Zurück zum Zitat Xu LC, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28(22):3273–3283CrossRef Xu LC, Siedlecki CA (2007) Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28(22):3273–3283CrossRef
Zurück zum Zitat Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446CrossRef Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446CrossRef
Zurück zum Zitat Yang M, Zhu S, Chen Y, Chang Z, Chen G, Gong Y, Zhao N, Zhang X (2004) Studies on bone marrow stromal cells affinity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials 25(7–8):1365–1373CrossRef Yang M, Zhu S, Chen Y, Chang Z, Chen G, Gong Y, Zhao N, Zhang X (2004) Studies on bone marrow stromal cells affinity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials 25(7–8):1365–1373CrossRef
Zurück zum Zitat Zhao Q, Zhai GJ, Ng DHL, Zhang XZ, Chen ZQ (1999) Surface modification of Al2O3 bioceramic by NH2+ ion implantation. Biomaterials 20(6):595–599CrossRef Zhao Q, Zhai GJ, Ng DHL, Zhang XZ, Chen ZQ (1999) Surface modification of Al2O3 bioceramic by NH2+ ion implantation. Biomaterials 20(6):595–599CrossRef
Metadaten
Titel
Fabrication Techniques and Properties of Scaffolds
verfasst von
Naznin Sultana
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-34802-0_2

Neuer Inhalt