Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.02.2019 | Theoretical advances

Face detection based on evolutionary Haar filter

Zeitschrift:
Pattern Analysis and Applications
Autoren:
Miloud Besnassi, Nabil Neggaz, Abdelkader Benyettou
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Face detection is considered to be one of the principal techniques of biometrics. Several methods for face detection have been proposed and described in the literature, but the Viola and Jones method is one of the most prominent. This method is based on the principle of Haar filters. In this study, we propose a new type of Haar filter called a dispersed Haar filter. This new structure provides more flexibility for very complex geometry, such as the human face. To create the structure of the filter, we used three optimizations methods: differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). To test our approaches rigorously, we performed two types of tests. The first test is facial detection on fixed images from three different databases (Caltech 10K, FDDB, and CMU-MIT), which presents a significant challenge. The second test is more efficient and involves the recognition of human faces from a video database. For our experiment, we used a YouTube celebrity dataset. This system consists of two stages:
1.
Face detection using three detectors: Haar-DE, Haar-PSO, and Haar-GA.
 
2.
Face recognition using three machine-learning algorithms: multilayer perceptron (MLP), support vector machine (SVM), and convolutional neural network (CNN) with multi-scale images.
 
The proposed Haar-DE algorithm demonstrates good detection performance on several databases compared with the state-of-the-art methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise