Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.09.2015 | Original Article | Ausgabe 2/2017

Neural Computing and Applications 2/2017

Face recognition based on random subspace method and tensor subspace analysis

Zeitschrift:
Neural Computing and Applications > Ausgabe 2/2017
Autoren:
Yulian Zhu, Jing Xue

Abstract

In this paper, we propose a novel method, called random subspace method (RSM) based on tensor (Tensor-RS), for face recognition. Different from the traditional RSM which treats each pixel (or feature) of the face image as a sampling unit, thus ignores the spatial information within the face image, the proposed Tensor-RS regards each small image region as a sampling unit and obtains spatial information within small image regions by using reshaping image and executing tensor-based feature extraction method. More specifically, an original whole face image is first partitioned into some sub-images to improve the robustness to facial variations, and then each sub-image is reshaped into a new matrix whose each row corresponds to a vectorized small sub-image region. After that, based on these rearranged newly formed matrices, an incomplete random sampling by row vectors rather than by features (or feature projections) is applied. Finally, tensor subspace method, which can effectively extract the spatial information within the same row (or column) vector, is used to extract useful features. Extensive experiments on four standard face databases (AR, Yale, Extended Yale B and CMU PIE) demonstrate that the proposed Tensor-RS method significantly outperforms state-of-the-art methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2017

Neural Computing and Applications 2/2017 Zur Ausgabe

Premium Partner

    Bildnachweise