Skip to main content
Erschienen in: Journal of Materials Science 20/2018

25.06.2018 | Polymers

Facile preparation of biocompatible poly(l-lactic acid)-modified halloysite nanotubes/poly(ε-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion templates

verfasst von: Yang Hu, Shuifeng Liu, Xin Li, Teng Yuan, Xiuju Zou, Yinyan He, Xianming Dong, Wuyi Zhou, Zhuohong Yang

Erschienen in: Journal of Materials Science | Ausgabe 20/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biocompatible porous scaffolds with tunable microstructures and drug delivery ability have aroused increasing attention in the application of the biomedical fields, especially in tissue engineering. In this study, we have facilely fabricated the poly(l-lactic acid)-modified halloysite nanotubes (m-HNTs)/poly(ε-caprolactone) (PCL) porous scaffolds by direct solvent evaporation of m-HNTs stabilized water in oil Pickering emulsion templates, which contain PCL in the oil phase. The obtained scaffolds have possessed the porous microstructures, which can be easily tailored by varying the preparation conditions of emulsion templates including m-HNTs concentrations and the volume ratios of water to oil. Furthermore, the antibacterial drug enrofloxacin (ENR) has been loaded into the scaffolds, and the in vitro release studies show the potential of m-HNTs/PCL porous scaffolds as drug carriers. And the antimicrobial test results have proved that the ENR-loaded porous scaffolds exhibit obvious and long-term antibacterial activity against Escherichia coli. In addition, mouse bone mesenchymal stem cells (mBMSCs) are cultured on the m-HNTs/PCL porous scaffolds, and the results of cell counting kit-8 assay and confocal laser scanning microscope observation show that the m-HNTs/PCL porous scaffolds are cytocompatible, because mBMSCs can attach, develop and proliferate well on the porous scaffolds. All the results indicate that the m-HNTs/PCL porous scaffolds hold great potential applications in tissue engineering as scaffolds and/or drug carriers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Liu ZM, Tang ML, Zhao JP, Chai RJ, Kang JH (2018) Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater 30(17):1705388CrossRef Liu ZM, Tang ML, Zhao JP, Chai RJ, Kang JH (2018) Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater 30(17):1705388CrossRef
3.
Zurück zum Zitat Dou TT, Jing N, Zhou BY, Zhang PD (2018) In vitro mineralization kinetics of poly(l-lactic acid)/hydroxyapatite nanocomposite material by attenuated total reflection Fourier transform infrared mapping coupled with principal component analysis. J Mater Sci 53(11):8009–8019. https://doi.org/10.1021/la101519b Dou TT, Jing N, Zhou BY, Zhang PD (2018) In vitro mineralization kinetics of poly(l-lactic acid)/hydroxyapatite nanocomposite material by attenuated total reflection Fourier transform infrared mapping coupled with principal component analysis. J Mater Sci 53(11):8009–8019. https://​doi.​org/​10.​1021/​la101519b
4.
Zurück zum Zitat Vetrik M, Parizek M, Hadraba D, Kukackova O, Brus J, Hlidkova H, Komankova L, Hodan J, Sedlacek O, Slouf M, Bacakova L, Hruby M (2018) Porous heat-treated polyacrylonitrile scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 10(10):8496–8506CrossRef Vetrik M, Parizek M, Hadraba D, Kukackova O, Brus J, Hlidkova H, Komankova L, Hodan J, Sedlacek O, Slouf M, Bacakova L, Hruby M (2018) Porous heat-treated polyacrylonitrile scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 10(10):8496–8506CrossRef
6.
Zurück zum Zitat Hu Y, Han WF, Chen YL, Zou RX, Ouyang Y, Zhou WY, Yang ZH, Wang CY (2017) One-pot fabrication of poly(ε-caprolactone)-incorporated bovine serum albumin/calciumalginate/hydroxyapatite nanocomposite scaffolds by high internal phase emulsion templates. Macromol Mater Eng 302:1600367CrossRef Hu Y, Han WF, Chen YL, Zou RX, Ouyang Y, Zhou WY, Yang ZH, Wang CY (2017) One-pot fabrication of poly(ε-caprolactone)-incorporated bovine serum albumin/calciumalginate/hydroxyapatite nanocomposite scaffolds by high internal phase emulsion templates. Macromol Mater Eng 302:1600367CrossRef
7.
Zurück zum Zitat Chae T, Yang H, Leung V, Ko F, Troczynski T (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue engineering. J Mater Sci Mater Med 24(8):1885–1894CrossRef Chae T, Yang H, Leung V, Ko F, Troczynski T (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue engineering. J Mater Sci Mater Med 24(8):1885–1894CrossRef
8.
Zurück zum Zitat Brostow W, Lobland HEH (2017) Materials: introduction and applications. Biomaterials. Wiley, New York, pp 211–233 Brostow W, Lobland HEH (2017) Materials: introduction and applications. Biomaterials. Wiley, New York, pp 211–233
9.
Zurück zum Zitat Levingstone TJ, Ramesh A, Brady RT, Brama PA, Kearney C, Gleeson JP, O’Brien FJ (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87:69–81CrossRef Levingstone TJ, Ramesh A, Brady RT, Brama PA, Kearney C, Gleeson JP, O’Brien FJ (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87:69–81CrossRef
11.
Zurück zum Zitat Yang T, Hu Y, Wang CY, Binks BP (2017) Fabrication of hierarchical macroporous biocompatible scaffolds by combining pickering high internal phase emulsion templates with three-dimensional printing. ACS Appl Mater Interfaces 9:22950–22958CrossRef Yang T, Hu Y, Wang CY, Binks BP (2017) Fabrication of hierarchical macroporous biocompatible scaffolds by combining pickering high internal phase emulsion templates with three-dimensional printing. ACS Appl Mater Interfaces 9:22950–22958CrossRef
12.
Zurück zum Zitat Yao ZC, Gao Y, Chang MW, Ahmad Z, Li JS (2016) Regulating poly-caprolactone fiber characteristics in situ during one-step coaxial electrospinning via enveloping liquids. Mater Lett 183:202–206CrossRef Yao ZC, Gao Y, Chang MW, Ahmad Z, Li JS (2016) Regulating poly-caprolactone fiber characteristics in situ during one-step coaxial electrospinning via enveloping liquids. Mater Lett 183:202–206CrossRef
13.
Zurück zum Zitat Wang BL, Zheng HX, Chang MW, Ahmad Z, Li JS (2016) Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release. Colloids Surf B 145:757–767CrossRef Wang BL, Zheng HX, Chang MW, Ahmad Z, Li JS (2016) Hollow polycaprolactone composite fibers for controlled magnetic responsive antifungal drug release. Colloids Surf B 145:757–767CrossRef
14.
Zurück zum Zitat Wu ST, Wang BL, Ahmad Z, Huang J, Chang MW, Li JS (2017) Surface modified electrospun porous magnetic hollow fibers using secondary downstream collection solvent contouring. Mater Lett 204:73–76CrossRef Wu ST, Wang BL, Ahmad Z, Huang J, Chang MW, Li JS (2017) Surface modified electrospun porous magnetic hollow fibers using secondary downstream collection solvent contouring. Mater Lett 204:73–76CrossRef
15.
Zurück zum Zitat Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRef Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 23:1749–1761CrossRef
16.
Zurück zum Zitat Samanta A, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK (2017) Hydroxyapatite stabilized pickering emulsions of poly(ε-caprolactone) and their composite electrospun scaffolds. Colloids Surf A 533:224–230CrossRef Samanta A, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK (2017) Hydroxyapatite stabilized pickering emulsions of poly(ε-caprolactone) and their composite electrospun scaffolds. Colloids Surf A 533:224–230CrossRef
17.
Zurück zum Zitat Samanta A, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK (2017) Facile fabrication of composite electrospun nanofibrous matrices of poly(ε-caprolactone)-silica based pickering emulsion. Langmuir 33(32):8062–8069CrossRef Samanta A, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK (2017) Facile fabrication of composite electrospun nanofibrous matrices of poly(ε-caprolactone)-silica based pickering emulsion. Langmuir 33(32):8062–8069CrossRef
18.
Zurück zum Zitat Ding YP, Li W, Müller T, Schubert DW, Boccaccini AR, Yao QQ, Roether JA (2016) Electrospun polyhydroxybutyrate/poly (ε-caprolactone)/58S sol–gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering. ACS Appl Mater Interfaces 8(27):17098–17108CrossRef Ding YP, Li W, Müller T, Schubert DW, Boccaccini AR, Yao QQ, Roether JA (2016) Electrospun polyhydroxybutyrate/poly (ε-caprolactone)/58S sol–gel bioactive glass hybrid scaffolds with highly improved osteogenic potential for bone tissue engineering. ACS Appl Mater Interfaces 8(27):17098–17108CrossRef
19.
Zurück zum Zitat Fernández J, Auzmendi O, Amestoy H, Diez-Torre A, Sarasua JR (2017) Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. Eur Polym J 94:208–221CrossRef Fernández J, Auzmendi O, Amestoy H, Diez-Torre A, Sarasua JR (2017) Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. Eur Polym J 94:208–221CrossRef
20.
Zurück zum Zitat Torres E, Valles-Lluch A, Fombuena V, Napiwocki B, Lih-Sheng T (2017) Influence of the hydrophobic-hydrophilic nature of biomedical polymers and nanocomposites on in vitro biological development. Macromol Mater Eng 302(12):1700259CrossRef Torres E, Valles-Lluch A, Fombuena V, Napiwocki B, Lih-Sheng T (2017) Influence of the hydrophobic-hydrophilic nature of biomedical polymers and nanocomposites on in vitro biological development. Macromol Mater Eng 302(12):1700259CrossRef
21.
Zurück zum Zitat Sahnoune M, Taguet A, Otazaghine B, Kaci M, Lopez-Cuestab JM (2017) Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. Eur Polym J 90:418–430CrossRef Sahnoune M, Taguet A, Otazaghine B, Kaci M, Lopez-Cuestab JM (2017) Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. Eur Polym J 90:418–430CrossRef
23.
Zurück zum Zitat Wei ZJ, Wang CY, Liu H, Zou SW, Tong Z (2012) Halloysite nanotubes as particulate emulsifier: preparation of biocompatible drug-carrying PLGA microspheres based on pickering emulsion. J Appl Polym Sci 125:E358–E368CrossRef Wei ZJ, Wang CY, Liu H, Zou SW, Tong Z (2012) Halloysite nanotubes as particulate emulsifier: preparation of biocompatible drug-carrying PLGA microspheres based on pickering emulsion. J Appl Polym Sci 125:E358–E368CrossRef
24.
Zurück zum Zitat Xu W, Luo BH, Wen W, Xie WJ, Wang XY, Liu MX, Zhou CR (2015) Surface modification of halloysite nanotubes with l-lactic acid: an effective route to high-performance poly(l-lactide) composites. J Appl Polym Sci 132:41451 Xu W, Luo BH, Wen W, Xie WJ, Wang XY, Liu MX, Zhou CR (2015) Surface modification of halloysite nanotubes with l-lactic acid: an effective route to high-performance poly(l-lactide) composites. J Appl Polym Sci 132:41451
25.
Zurück zum Zitat Yang YT, Chen Y, Leng F, Huang L, Wang ZJ, Tian WQ (2017) Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Appl Sci 7:1215CrossRef Yang YT, Chen Y, Leng F, Huang L, Wang ZJ, Tian WQ (2017) Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Appl Sci 7:1215CrossRef
26.
Zurück zum Zitat Zhang PB, Hong ZK, Yu T, Chen XS, Jing XB (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30:58–70CrossRef Zhang PB, Hong ZK, Yu T, Chen XS, Jing XB (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials 30:58–70CrossRef
27.
Zurück zum Zitat Jafarzadeh S, Haddadi-Asl V, Roghani-Mamaqani H (2015) Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. J Polym Res 22:123CrossRef Jafarzadeh S, Haddadi-Asl V, Roghani-Mamaqani H (2015) Nanofibers of poly (hydroxyethyl methacrylate)-grafted halloysite nanotubes and polycaprolactone by combination of RAFT polymerization and electrospinning. J Polym Res 22:123CrossRef
28.
Zurück zum Zitat Binks BP (2002) Macroporous silica from solid-stabilized emulsion templates. Adv Mater 14:1824–1827CrossRef Binks BP (2002) Macroporous silica from solid-stabilized emulsion templates. Adv Mater 14:1824–1827CrossRef
29.
Zurück zum Zitat Chen YH, Ballard N, Bon SA (2013) Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem Commun 49:1524–1526CrossRef Chen YH, Ballard N, Bon SA (2013) Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem Commun 49:1524–1526CrossRef
30.
Zurück zum Zitat Barg S, Binks BP, Wang H, Koch D, Grathwohl G (2012) Cellular ceramics from emulsified suspensions of mixed particles. J Porous Mater 19(5):859–867CrossRef Barg S, Binks BP, Wang H, Koch D, Grathwohl G (2012) Cellular ceramics from emulsified suspensions of mixed particles. J Porous Mater 19(5):859–867CrossRef
31.
Zurück zum Zitat Aranberri I, Binks BP, Clint JH, Fletcher PDI (2009) Synthesis of macroporous silica from solid-stabilised emulsion templates. J Porous Mat 16(4):429–437CrossRef Aranberri I, Binks BP, Clint JH, Fletcher PDI (2009) Synthesis of macroporous silica from solid-stabilised emulsion templates. J Porous Mat 16(4):429–437CrossRef
32.
Zurück zum Zitat Yang Y, Wei ZJ, Wang CY, Tong Z (2013) Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper(II) ions. Chem Commun 49(64):7144–7146CrossRef Yang Y, Wei ZJ, Wang CY, Tong Z (2013) Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper(II) ions. Chem Commun 49(64):7144–7146CrossRef
33.
Zurück zum Zitat Jing X, Mi HY, Turng LS (2017) Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater Sci Eng C 72:53–61CrossRef Jing X, Mi HY, Turng LS (2017) Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming. Mater Sci Eng C 72:53–61CrossRef
34.
Zurück zum Zitat Hu Y, Gao HC, Du ZS, Liu YX, Yang Y, Wang CY (2015) Pickering high internal phase emulsion-based hydroxyapatite-poly(ε-caprolactone) nanocomposite scaffolds. J Mater Chem B 3:3848–3857CrossRef Hu Y, Gao HC, Du ZS, Liu YX, Yang Y, Wang CY (2015) Pickering high internal phase emulsion-based hydroxyapatite-poly(ε-caprolactone) nanocomposite scaffolds. J Mater Chem B 3:3848–3857CrossRef
35.
Zurück zum Zitat Liu MX, Yin DP, Fu HL, Deng FY, Peng GN, Shu G, Yuan ZX, Shi F, Lin JC, Zhao L, Yin LZ, Fan GQ (2017) Double-coated enrofloxacin microparticles with chitosan andalginate: preparation, characterization and taste-masking effect study. Carbohyd Polym 170:247–253CrossRef Liu MX, Yin DP, Fu HL, Deng FY, Peng GN, Shu G, Yuan ZX, Shi F, Lin JC, Zhao L, Yin LZ, Fan GQ (2017) Double-coated enrofloxacin microparticles with chitosan andalginate: preparation, characterization and taste-masking effect study. Carbohyd Polym 170:247–253CrossRef
36.
Zurück zum Zitat Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz J Microbiol 31(4):247–256CrossRef Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz J Microbiol 31(4):247–256CrossRef
37.
Zurück zum Zitat Brostow W, Brumbley S, Gahutishvili M, Hnatchuk N (2016) Arsenic antibacterial polymer composites based on poly(vinyl chloride). Macromol Symp 365:258–262CrossRef Brostow W, Brumbley S, Gahutishvili M, Hnatchuk N (2016) Arsenic antibacterial polymer composites based on poly(vinyl chloride). Macromol Symp 365:258–262CrossRef
38.
Zurück zum Zitat Wang JG, Li YZ, Gao YF, Xie ZF, Zhou MH, He YY, Wu H, Zhou WY, Dong XM, Yang ZH, Hu Y (2018) Cinnamon oil-loaded composite emulsion hydrogels with antibacterial activity prepared using concentrated emulsion templates. Ind Crops Prod 112:281–289CrossRef Wang JG, Li YZ, Gao YF, Xie ZF, Zhou MH, He YY, Wu H, Zhou WY, Dong XM, Yang ZH, Hu Y (2018) Cinnamon oil-loaded composite emulsion hydrogels with antibacterial activity prepared using concentrated emulsion templates. Ind Crops Prod 112:281–289CrossRef
39.
Zurück zum Zitat Huang PL, Wang JN, Lai ST, Liu F, Ni N, Cao QY, Liu W, Deng DYB, Zhou WY (2014) Surface modified titania nanotubes containing anti-bacterial drugs for controlled delivery nanosystems with high bioactivity. J Mater Chem B 2:8616–8625CrossRef Huang PL, Wang JN, Lai ST, Liu F, Ni N, Cao QY, Liu W, Deng DYB, Zhou WY (2014) Surface modified titania nanotubes containing anti-bacterial drugs for controlled delivery nanosystems with high bioactivity. J Mater Chem B 2:8616–8625CrossRef
40.
Zurück zum Zitat Liu MX, Wu CC, Jiao YP, Xiong S, Zhou CR (2013) Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089CrossRef Liu MX, Wu CC, Jiao YP, Xiong S, Zhou CR (2013) Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089CrossRef
Metadaten
Titel
Facile preparation of biocompatible poly(l-lactic acid)-modified halloysite nanotubes/poly(ε-caprolactone) porous scaffolds by solvent evaporation of Pickering emulsion templates
verfasst von
Yang Hu
Shuifeng Liu
Xin Li
Teng Yuan
Xiuju Zou
Yinyan He
Xianming Dong
Wuyi Zhou
Zhuohong Yang
Publikationsdatum
25.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2588-6

Weitere Artikel der Ausgabe 20/2018

Journal of Materials Science 20/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.