Skip to main content
Erschienen in: Journal of Materials Science 3/2019

11.10.2018 | Energy materials

Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries

verfasst von: Rui Zhang, Huiyong Li, Dan Sun, Jingyi Luan, Xiaobing Huang, Yougen Tang, Haiyan Wang

Erschienen in: Journal of Materials Science | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Developing advanced MoS2 anode material for sodium ion battery is still a big challenge since it is hindered by poor cycling stability and rate capability owing to huge volume variation during charge/discharge processes and low conductivity. In this work, three-dimensional porous networks consisting of several-layered MoS2/C nanosheets are synthesized via a facile freeze-drying approach using NaCl as template. MoS2/C nanosheet networks demonstrate a high reversible capacity of 389 mAh g−1 and maintain 370 mAh g−1 after 100 cycles at 100 mA g−1, indicating excellent cycling stability. Good rate properties are also achieved with reversible capacities of 292, 256, 223, 174 mAh g−1 at 1, 2, 4, 6 A g−1, respectively. The excellent electrochemical performance can be ascribed to the unique three-dimensional networks consisting of few-layered MoS2 nanosheets, which facilitates sodium ion diffusion via near-surface reaction. Moreover, the robust three-dimensional carbon matrix can not only provide a conductive network, but also buffer the strain and maintain the electrode integrity during repeated sodiation/desodiation process. This strategy presents a new path for fabricating low-cost and high-yield three-dimensional metal sulfide (phosphide)/carbon composites for applications in energy-related fields and beyond.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRef Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607CrossRef
2.
Zurück zum Zitat Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614CrossRef
3.
Zurück zum Zitat Dipan K, Elahe T, Victor D, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448CrossRef Dipan K, Elahe T, Victor D, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448CrossRef
4.
Zurück zum Zitat Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682CrossRef
5.
Zurück zum Zitat Pang Y, Zhang S, Liu L, Liang J, Sun Z, Wang Y, Xiao C, Ding D, Ding S (2017) Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J Mater Chem A 5:17963–17972CrossRef Pang Y, Zhang S, Liu L, Liang J, Sun Z, Wang Y, Xiao C, Ding D, Ding S (2017) Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. J Mater Chem A 5:17963–17972CrossRef
6.
Zurück zum Zitat Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRef Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642CrossRef
7.
Zurück zum Zitat Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte Interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte Interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRef
8.
Zurück zum Zitat Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2016) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2016) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRef
9.
Zurück zum Zitat Yang W, Kai H, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRef Yang W, Kai H, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033CrossRef
10.
Zurück zum Zitat Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y (2014) Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693CrossRef Li W, Zeng L, Yang Z, Gu L, Wang J, Liu X, Cheng J, Yu Y (2014) Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 6:693CrossRef
11.
Zurück zum Zitat Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef Komaba S, Matsuura Y, Ishikawa T, Yabuuchi N, Murata W, Kuze S (2012) Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem Commun 21:65–68CrossRef
12.
Zurück zum Zitat Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072CrossRef Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072CrossRef
13.
Zurück zum Zitat Zhang Q, He H, Huang X, Yan J, Tang Y, Wang H (2018) TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries. Chem Eng J 332:57–65CrossRef Zhang Q, He H, Huang X, Yan J, Tang Y, Wang H (2018) TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries. Chem Eng J 332:57–65CrossRef
14.
Zurück zum Zitat He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M (2017) Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources 354:179–188CrossRef He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M (2017) Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources 354:179–188CrossRef
15.
Zurück zum Zitat Zhang Y, Lim YV, Huang S, Pam ME, Wang Y, Ang LK, Shi Y, Yang HY (2018) Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 14:1800898CrossRef Zhang Y, Lim YV, Huang S, Pam ME, Wang Y, Ang LK, Shi Y, Yang HY (2018) Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 14:1800898CrossRef
16.
Zurück zum Zitat Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788CrossRef Choi SH, Ko YN, Lee J-K, Kang YC (2015) 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv Funct Mater 25:1780–1788CrossRef
17.
Zurück zum Zitat Eames C, Islam MS (2014) Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc 136:16270–16276CrossRef Eames C, Islam MS (2014) Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc 136:16270–16276CrossRef
18.
Zurück zum Zitat Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383CrossRef Sun D, Ye D, Liu P, Tang Y, Guo J, Wang L, Wang H (2018) MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv Energy Mater 8:1702383CrossRef
19.
Zurück zum Zitat Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27:1702116CrossRef Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27:1702116CrossRef
20.
Zurück zum Zitat Kumar NA, Dar MA, Gul R, Baek JB (2015) Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater Today 18:286–298CrossRef Kumar NA, Dar MA, Gul R, Baek JB (2015) Graphene and molybdenum disulfide hybrids: synthesis and applications. Mater Today 18:286–298CrossRef
21.
Zurück zum Zitat Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26:911–918CrossRef Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26:911–918CrossRef
22.
Zurück zum Zitat Li Y, Liang Y, Hernandez FCR, Yoo HD, An Q, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461CrossRef Li Y, Liang Y, Hernandez FCR, Yoo HD, An Q, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461CrossRef
23.
Zurück zum Zitat Li X, Feng Z, Zai J, Ma Z-F, Qian X (2018) Incorporation of Co into MoS2/graphene nanocomposites: one effective way to enhance the cycling stability of Li/Na storage. J Power Sources 373:103–109CrossRef Li X, Feng Z, Zai J, Ma Z-F, Qian X (2018) Incorporation of Co into MoS2/graphene nanocomposites: one effective way to enhance the cycling stability of Li/Na storage. J Power Sources 373:103–109CrossRef
24.
Zurück zum Zitat Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5:1401205CrossRef Su D, Dou S, Wang G (2015) Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv Energy Mater 5:1401205CrossRef
25.
Zurück zum Zitat Che Z, Li Y, Chen K, Wei M (2016) Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J Power Sources 331:50–57CrossRef Che Z, Li Y, Chen K, Wei M (2016) Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J Power Sources 331:50–57CrossRef
26.
Zurück zum Zitat Yang W, He L, Tian X, Yan M, Yuan H, Liao X, Meng J, Hao Z, Mai L (2017) Microdevices: carbon-MEMS-based alternating stacked MoS2@rGOCNT micro-supercapacitor with high capacitance and energy density. Small 13:1700639CrossRef Yang W, He L, Tian X, Yan M, Yuan H, Liao X, Meng J, Hao Z, Mai L (2017) Microdevices: carbon-MEMS-based alternating stacked MoS2@rGOCNT micro-supercapacitor with high capacitance and energy density. Small 13:1700639CrossRef
27.
Zurück zum Zitat Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630CrossRef Xiong F, Cai Z, Qu L, Zhang P, Yuan Z, Asare OK, Xu W, Lin C, Mai L (2015) Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: a stable anode for lithium-ion batteries. ACS Appl Mater Interfaces 7:12625–12630CrossRef
28.
Zurück zum Zitat Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed Engl 53:2152–2156CrossRef Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed Engl 53:2152–2156CrossRef
29.
Zurück zum Zitat Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460–23470CrossRef Hu X, Chen J, Zeng G, Jia J, Cai P, Chai G, Wen Z (2017) Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. J Mater Chem A 5:23460–23470CrossRef
30.
Zurück zum Zitat Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRef Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738CrossRef
31.
Zurück zum Zitat Qin J, Wang T, Liu D, Liu E, Zhao N, Shi C, He F, Ma L, He C (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater 30:1704670CrossRef Qin J, Wang T, Liu D, Liu E, Zhao N, Shi C, He F, Ma L, He C (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater 30:1704670CrossRef
32.
Zurück zum Zitat Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798CrossRef Hu Z, Wang L, Zhang K, Wang J, Cheng F, Tao Z, Chen J (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798CrossRef
33.
Zurück zum Zitat Zhao C, Yu C, Qiu B, Zhou S, Zhang M, Huang H, Wang B, Zhao J, Sun X, Qiu J (2018) Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv Mater 30:1702486CrossRef Zhao C, Yu C, Qiu B, Zhou S, Zhang M, Huang H, Wang B, Zhao J, Sun X, Qiu J (2018) Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions. Adv Mater 30:1702486CrossRef
34.
Zurück zum Zitat Teng Y, Zhao H, Zhang Z, Zhao L, Zhang Y, Li Z, Xia Q, Du Z, Świerczek K (2017) MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119:91–100CrossRef Teng Y, Zhao H, Zhang Z, Zhao L, Zhang Y, Li Z, Xia Q, Du Z, Świerczek K (2017) MoS2 nanosheets vertically grown on reduced graphene oxide via oxygen bonds with carbon coating as ultrafast sodium ion batteries anodes. Carbon 119:91–100CrossRef
35.
Zurück zum Zitat Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481CrossRef Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2015) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11:473–481CrossRef
36.
Zurück zum Zitat Zhang P, Qin F, Zou L, Wang M, Zhang K, Lai Y, Li J (2017) Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale 9:12189–12195CrossRef Zhang P, Qin F, Zou L, Wang M, Zhang K, Lai Y, Li J (2017) Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale 9:12189–12195CrossRef
37.
Zurück zum Zitat David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRef David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8:1759–1770CrossRef
38.
Zurück zum Zitat Lacey SD, Wan J, Cresce AVW, Russell SM, Dai J, Bao W, Xu K, Hu L (2015) Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett 15:1018–1024CrossRef Lacey SD, Wan J, Cresce AVW, Russell SM, Dai J, Bao W, Xu K, Hu L (2015) Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett 15:1018–1024CrossRef
39.
Zurück zum Zitat Xia Q, Tan Q (2018) MoS2 nanosheets strongly coupled with cotton-derived carbon microtubes for ultrafast sodium ion insertion. Mater Lett 228:285–288CrossRef Xia Q, Tan Q (2018) MoS2 nanosheets strongly coupled with cotton-derived carbon microtubes for ultrafast sodium ion insertion. Mater Lett 228:285–288CrossRef
40.
Zurück zum Zitat Zhang S, Yu X, Yu H, Chen Y, Gao P, Li C, Zhu C (2014) Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl Mater Interfaces 6:21880–21885CrossRef Zhang S, Yu X, Yu H, Chen Y, Gao P, Li C, Zhu C (2014) Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl Mater Interfaces 6:21880–21885CrossRef
41.
Zurück zum Zitat Xie X, Ao Z, Su D, Zhang J, Wang G (2015) MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25(9):1393–1403CrossRef Xie X, Ao Z, Su D, Zhang J, Wang G (2015) MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv Funct Mater 25(9):1393–1403CrossRef
42.
Zurück zum Zitat Wei Q, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61CrossRef Wei Q, Chen T, Pan L, Niu L, Hu B, Li D, Li J, Sun Z (2015) MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance. Electrochim Acta 153:55–61CrossRef
43.
Zurück zum Zitat Zhou F, Xin S, Liang HW, Song LT, Yu SH (2014) Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed Engl 53:11552–11556CrossRef Zhou F, Xin S, Liang HW, Song LT, Yu SH (2014) Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed Engl 53:11552–11556CrossRef
44.
Zurück zum Zitat Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208CrossRef
45.
Zurück zum Zitat Wang YX, Chou SL, Wexler D, Liu HK, Dou SX (2014) High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites. Chemistry 20:9607CrossRef Wang YX, Chou SL, Wexler D, Liu HK, Dou SX (2014) High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites. Chemistry 20:9607CrossRef
46.
Zurück zum Zitat Kong D, Cheng C, Wang Y, Huang ZX, Lim YV, Liu B, Ge Q, Yang HY (2017) Fe3O4 quantum dots decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion batteries anode. J Mater Chem A 5:9122–9131CrossRef Kong D, Cheng C, Wang Y, Huang ZX, Lim YV, Liu B, Ge Q, Yang HY (2017) Fe3O4 quantum dots decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion batteries anode. J Mater Chem A 5:9122–9131CrossRef
47.
Zurück zum Zitat Xu M, Yi F, Niu Y, Xie J, Hou J, Liu S, Hu W, Li Y, Li CM (2015) Solvent-mediated directionally self-assembling MoS2 nanosheets into a novel worm-like structure and its application in sodium batteries. J Mater Chem A 3:9932–9937CrossRef Xu M, Yi F, Niu Y, Xie J, Hou J, Liu S, Hu W, Li Y, Li CM (2015) Solvent-mediated directionally self-assembling MoS2 nanosheets into a novel worm-like structure and its application in sodium batteries. J Mater Chem A 3:9932–9937CrossRef
48.
Zurück zum Zitat Xu G, Liu P, Ren Y, Huang X, Peng Z, Tang Y, Wang H (2017) Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries. J Power Sources 361:1–8CrossRef Xu G, Liu P, Ren Y, Huang X, Peng Z, Tang Y, Wang H (2017) Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries. J Power Sources 361:1–8CrossRef
49.
Zurück zum Zitat He H, Sun D, Zhang Q, Fu F, Tang Y, Guo J, Shao M, Wang H (2017) Iron doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl Mater Interfaces 9:6093–6103CrossRef He H, Sun D, Zhang Q, Fu F, Tang Y, Guo J, Shao M, Wang H (2017) Iron doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl Mater Interfaces 9:6093–6103CrossRef
50.
Zurück zum Zitat Sun D, Tang Y, Ye D, Yan J, Zhou H, Wang H (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl Mater Interfaces 9:5254–5262CrossRef Sun D, Tang Y, Ye D, Yan J, Zhou H, Wang H (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl Mater Interfaces 9:5254–5262CrossRef
51.
Zurück zum Zitat He H, Gan Q, Wang H, Xu G-L, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M (2018) Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44:217–227CrossRef He H, Gan Q, Wang H, Xu G-L, Zhang X, Huang D, Fu F, Tang Y, Amine K, Shao M (2018) Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44:217–227CrossRef
52.
Zurück zum Zitat He H, Huang D, Pang W, Sun D, Wang Q, Tang Y, Ji X, Guo Z, Wang H (2018) Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv Mater 30:1801013CrossRef He H, Huang D, Pang W, Sun D, Wang Q, Tang Y, Ji X, Guo Z, Wang H (2018) Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv Mater 30:1801013CrossRef
53.
Zurück zum Zitat Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286CrossRef Mortazavi M, Wang C, Deng J, Shenoy VB, Medhekar NV (2014) Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J Power Sources 268:279–286CrossRef
Metadaten
Titel
Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries
verfasst von
Rui Zhang
Huiyong Li
Dan Sun
Jingyi Luan
Xiaobing Huang
Yougen Tang
Haiyan Wang
Publikationsdatum
11.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2991-z

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Science 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.