Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 16/2017

04.05.2017

Facile synthesis of α-Fe2O3@graphene oxide nanocomposites for enhanced gas-sensing performance to ethanol

verfasst von: Xiaohua Jia, Dandan Lian, Bing Shi, Rongrong Dai, Changchao Li, Xiangyang Wu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 16/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A simple and eco-friendly approach was used to prepare α-Fe2O3@graphene oxide (α-Fe2O3@GO) nanocomposites with different iron oxide content in lower temperature. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption techniques. The results show that α-Fe2O3 nanoparticles with particle sizes of 60–100 nm are uniformly anchored on the surface of GO nanosheets at lower hydrothermal reaction. The specific surface area of α-Fe2O3@GO (114.57 m2/g) was about threefold larger than that of pure iron oxide (33.37 m2/g). Moreover, α-Fe2O3@GO nanocomposites with optimal mass ratio (8:1) between iron oxide and GO, which exhibited enhanced response to 100 ppm ethanol (14.82) in comparison with pure α-Fe2O3 (3.48) at 260 °C. The improved sensitive performance is in contact with larger surface area and incremental active sites in interface owing to introducing GO. The results reveal that GO is crucial to improve gas sensing performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Comini, Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta. 568, 28–40 (2006)CrossRef E. Comini, Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta. 568, 28–40 (2006)CrossRef
2.
Zurück zum Zitat Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012)CrossRef Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012)CrossRef
3.
Zurück zum Zitat P.S. Cho, K.W. Kim, J.H. Lee, NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J. Electroceram. 17, 975–978 (2006)CrossRef P.S. Cho, K.W. Kim, J.H. Lee, NO2 sensing characteristics of ZnO nanorods prepared by hydrothermal method. J. Electroceram. 17, 975–978 (2006)CrossRef
4.
Zurück zum Zitat H. Wang, Q.Q. Liang, W.J. Wang, Y.R. An, J.H. Li, L. Guo, Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst. Growth Des. 11, 2942–2947 (2011)CrossRef H. Wang, Q.Q. Liang, W.J. Wang, Y.R. An, J.H. Li, L. Guo, Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst. Growth Des. 11, 2942–2947 (2011)CrossRef
5.
Zurück zum Zitat N.N. Ba, L.J. Zhu, G.Z. Zhang, J.F. Li, H.J. Li, Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties. Sens. Actuators B 227, 142–148 (2016)CrossRef N.N. Ba, L.J. Zhu, G.Z. Zhang, J.F. Li, H.J. Li, Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties. Sens. Actuators B 227, 142–148 (2016)CrossRef
6.
Zurück zum Zitat A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens. Actuators B 102, 291–298 (2004)CrossRef A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on α-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens. Actuators B 102, 291–298 (2004)CrossRef
7.
Zurück zum Zitat H. Kheel, G.J. Sun, J.K. Lee, S. Lee, R.P. Dwivedi, C. Lee, Enhanced H2S sensing performance of TiO2-decorated α-Fe2O3 nanorod sensor. Ceram. Int. 42, 1–8 (2016)CrossRef H. Kheel, G.J. Sun, J.K. Lee, S. Lee, R.P. Dwivedi, C. Lee, Enhanced H2S sensing performance of TiO2-decorated α-Fe2O3 nanorod sensor. Ceram. Int. 42, 1–8 (2016)CrossRef
8.
Zurück zum Zitat S. Liang, J.P. Li, F. Wang, J.L. Qin, X.Y. Lai, X.M. Jiang, Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles. Sens. Actuators B 238, 923–927 (2017)CrossRef S. Liang, J.P. Li, F. Wang, J.L. Qin, X.Y. Lai, X.M. Jiang, Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles. Sens. Actuators B 238, 923–927 (2017)CrossRef
9.
Zurück zum Zitat P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)CrossRef
10.
Zurück zum Zitat W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Hydrothermal synthesis of monodisperse porous cube, cake and spheroid-like α-Fe2O3 particles and their high gas-sensing properties. Sens. Actuators B 220, 243–254 (2015)CrossRef W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Hydrothermal synthesis of monodisperse porous cube, cake and spheroid-like α-Fe2O3 particles and their high gas-sensing properties. Sens. Actuators B 220, 243–254 (2015)CrossRef
11.
Zurück zum Zitat Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, X. Xia, S. Zhang, S. Wu, Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112, 17804–17808 (2008)CrossRef Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, X. Xia, S. Zhang, S. Wu, Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112, 17804–17808 (2008)CrossRef
12.
Zurück zum Zitat S.Y. Zeng, K.B. Tang, T.W. Li, Z.H. Liang, D. Wang, Y.K. Wang, Y.X. Qi, W.W. Zhou, Facile route for the fabrication of porous hematite nanoflowers: its synthesis growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112, 4834–4836 (2008) S.Y. Zeng, K.B. Tang, T.W. Li, Z.H. Liang, D. Wang, Y.K. Wang, Y.X. Qi, W.W. Zhou, Facile route for the fabrication of porous hematite nanoflowers: its synthesis growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112, 4834–4836 (2008)
13.
Zurück zum Zitat S. Mitra, S. Das, K. Mandal, S. Chuadhari, Synthesis of α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology 18, 275608 (2007)CrossRef S. Mitra, S. Das, K. Mandal, S. Chuadhari, Synthesis of α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology 18, 275608 (2007)CrossRef
14.
Zurück zum Zitat P. Li, Y. Cai, H.Q. Fan, Porous thin sheet-based α-Fe2O3-doped In2O3 structures: hydrothermal synthesis and enhanced Cl2 sensing performance. RSC Adv. 3, 22239–22245 (2013)CrossRef P. Li, Y. Cai, H.Q. Fan, Porous thin sheet-based α-Fe2O3-doped In2O3 structures: hydrothermal synthesis and enhanced Cl2 sensing performance. RSC Adv. 3, 22239–22245 (2013)CrossRef
15.
Zurück zum Zitat L.M. Huang, H.Q. Fan, Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B 171–172, 1257–1263 (2012)CrossRef L.M. Huang, H.Q. Fan, Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B 171–172, 1257–1263 (2012)CrossRef
16.
Zurück zum Zitat W. Yan, H.Q. Fan, Y.C. Zhai, C. Yang, P.R. Ren, L.M. Huang, Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties. Sens. Actuators B 160, 1372–1379 (2011)CrossRef W. Yan, H.Q. Fan, Y.C. Zhai, C. Yang, P.R. Ren, L.M. Huang, Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties. Sens. Actuators B 160, 1372–1379 (2011)CrossRef
17.
Zurück zum Zitat P.C. Wu, W.S. Wang, Y.T. Huang, H.S. Sheu, Y. Lo, T.L. Tsai, D.B. Shieh, C.S. Yeh, Porous iron oxide based nanorods developed as delivery nanocapsules. Chem. Eur. J. 13, 3878–3885 (2007)CrossRef P.C. Wu, W.S. Wang, Y.T. Huang, H.S. Sheu, Y. Lo, T.L. Tsai, D.B. Shieh, C.S. Yeh, Porous iron oxide based nanorods developed as delivery nanocapsules. Chem. Eur. J. 13, 3878–3885 (2007)CrossRef
18.
Zurück zum Zitat H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang, S.W. Wu, Glycine-assisted hydrothermal synthesis of peculiar porous α-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta. 659, 266–273 (2010)CrossRef H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang, S.W. Wu, Glycine-assisted hydrothermal synthesis of peculiar porous α-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta. 659, 266–273 (2010)CrossRef
19.
Zurück zum Zitat G.K. Pradhan, K.M. Parida, Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3, 317–323 (2011)CrossRef G.K. Pradhan, K.M. Parida, Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3, 317–323 (2011)CrossRef
20.
Zurück zum Zitat H.Z. Wang, X.T. Zhang, B. Liu, H.L. Zhao, Y.C. Li, Y.B. Huang, Z.L. Du, Synthesis and characterization of single crystal α-Fe2O3 nanobelts. Chem. Lett. 34, 184–185 (2005)CrossRef H.Z. Wang, X.T. Zhang, B. Liu, H.L. Zhao, Y.C. Li, Y.B. Huang, Z.L. Du, Synthesis and characterization of single crystal α-Fe2O3 nanobelts. Chem. Lett. 34, 184–185 (2005)CrossRef
21.
Zurück zum Zitat Y.L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou, Z.L. Wang, Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 16, 2243–2251 (2006)CrossRef Y.L. Chueh, M.W. Lai, J.Q. Liang, L.J. Chou, Z.L. Wang, Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 16, 2243–2251 (2006)CrossRef
22.
Zurück zum Zitat S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Water photo oxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)CrossRef S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Water photo oxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21, 3048–3055 (2009)CrossRef
23.
Zurück zum Zitat W. Yan, H. Fan, Y. Zhai, C. Yang, P. Ren, L. Huang, Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties. Sens. Actuators B 160, 1372–1379 (2011)CrossRef W. Yan, H. Fan, Y. Zhai, C. Yang, P. Ren, L. Huang, Low temperature solution-based synthesis of porous flower-like α-Fe2O3 superstructures and their excellent gas-sensing properties. Sens. Actuators B 160, 1372–1379 (2011)CrossRef
24.
Zurück zum Zitat Q. Yu, J. Zhu, Z. Xu, X. Huang, Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors. Sens. Actuators B 213, 27–34 (2015)CrossRef Q. Yu, J. Zhu, Z. Xu, X. Huang, Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors. Sens. Actuators B 213, 27–34 (2015)CrossRef
25.
Zurück zum Zitat Y.M. Zhao, Y.H. Li, R.Z. Ma, M.J. Roe, D.G. McCartney, Y.Q. Zhu, Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron–water reaction. Small 2, 422–427 (2006)CrossRef Y.M. Zhao, Y.H. Li, R.Z. Ma, M.J. Roe, D.G. McCartney, Y.Q. Zhu, Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron–water reaction. Small 2, 422–427 (2006)CrossRef
26.
Zurück zum Zitat J.F. Tan, J.H. Chen, K. Liu, X.T. Huang, Synthesis of porous α-Fe2O3 microrods via in situ decomposition of FeC2O4 precursor for ultra-fast responding and recovering ethanol gas sensor. Sens. Actuators B 230, 46–53 (2016)CrossRef J.F. Tan, J.H. Chen, K. Liu, X.T. Huang, Synthesis of porous α-Fe2O3 microrods via in situ decomposition of FeC2O4 precursor for ultra-fast responding and recovering ethanol gas sensor. Sens. Actuators B 230, 46–53 (2016)CrossRef
27.
Zurück zum Zitat A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42, 1–9 (2016)CrossRef A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42, 1–9 (2016)CrossRef
28.
Zurück zum Zitat S.G. Chatterjeea, S. Chatterjeeb, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B 221, 1170–1181 (2015)CrossRef S.G. Chatterjeea, S. Chatterjeeb, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B 221, 1170–1181 (2015)CrossRef
29.
Zurück zum Zitat S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRef S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRef
30.
Zurück zum Zitat Q.Q. Lin, Y. Li, M.J. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature, Sens. Actuators B, 173, 139–147 (2012)CrossRef Q.Q. Lin, Y. Li, M.J. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature, Sens. Actuators B, 173, 139–147 (2012)CrossRef
31.
Zurück zum Zitat X.F. Chu, T. Hu, F. Gao, Y.P. Dong, W.Q. Sun, L.S. Bai, Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method. Mater. Sci. Eng. B 193, 97–104 (2015)CrossRef X.F. Chu, T. Hu, F. Gao, Y.P. Dong, W.Q. Sun, L.S. Bai, Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method. Mater. Sci. Eng. B 193, 97–104 (2015)CrossRef
32.
Zurück zum Zitat L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, W. Chen, Stable Cu2O nano-crystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5, 1564–1569 (2013)CrossRef L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, W. Chen, Stable Cu2O nano-crystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 5, 1564–1569 (2013)CrossRef
33.
Zurück zum Zitat Y. Yang, L. Sun, X.T. Dong, H. Yu, T.T. Wang, J.X. Wang, R.H. Wang, W.S. Yu, G.X. Liu, Fe3O4/rGO nanocomposite: synthesis and enhanced NO x gas-sensing properties at room temperature. RSC Adv. 43, 37085–37092 (2016)CrossRef Y. Yang, L. Sun, X.T. Dong, H. Yu, T.T. Wang, J.X. Wang, R.H. Wang, W.S. Yu, G.X. Liu, Fe3O4/rGO nanocomposite: synthesis and enhanced NO x gas-sensing properties at room temperature. RSC Adv. 43, 37085–37092 (2016)CrossRef
34.
Zurück zum Zitat S.M. Liang, J.Z. Zhu, C. Wang, S.T. Yu, H.P. Bi, X.H. Liu, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)CrossRef S.M. Liang, J.Z. Zhu, C. Wang, S.T. Yu, H.P. Bi, X.H. Liu, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)CrossRef
35.
Zurück zum Zitat H. Zhang, L. Yu, Q. Li, Y. Du, S.C. Ruan, Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017)CrossRef H. Zhang, L. Yu, Q. Li, Y. Du, S.C. Ruan, Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sens. Actuators B 241, 109–115 (2017)CrossRef
36.
Zurück zum Zitat B. Ghammraoui, V. Rebuffel, J. Tabaryeral, C. Paulus, L. Verger, P. Duvauchelle, Effect of grain size on stability of X-ray diffraction patterns used for threat detection. Nucl. Instrum. Methods Phys. Res. Sect. A 683, 1–7 (2012)CrossRef B. Ghammraoui, V. Rebuffel, J. Tabaryeral, C. Paulus, L. Verger, P. Duvauchelle, Effect of grain size on stability of X-ray diffraction patterns used for threat detection. Nucl. Instrum. Methods Phys. Res. Sect. A 683, 1–7 (2012)CrossRef
37.
Zurück zum Zitat S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A one-step solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. Acs Nano. 4, 3845–3852 (2010)CrossRef S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A one-step solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. Acs Nano. 4, 3845–3852 (2010)CrossRef
38.
Zurück zum Zitat B. Zhang, J. Liu, X.B. Cui, Y.L. Wang, Y. Gao, P. Sun, F.M. Liu, K. Shimanoe, N. Yamazoe, G. Lu, Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B 241, 904–914 (2017)CrossRef B. Zhang, J. Liu, X.B. Cui, Y.L. Wang, Y. Gao, P. Sun, F.M. Liu, K. Shimanoe, N. Yamazoe, G. Lu, Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sens. Actuators B 241, 904–914 (2017)CrossRef
39.
Zurück zum Zitat Y. Zhou, Q.L. Bao, L.A.L. Tang, Y.L. Zhong, K.P. Loh, Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009)CrossRef Y. Zhou, Q.L. Bao, L.A.L. Tang, Y.L. Zhong, K.P. Loh, Hydrothermal dehydration for the “Green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21, 2950–2956 (2009)CrossRef
40.
Zurück zum Zitat C. Xu, X. Wang, J.W. Zhu, Graphene–metal particle nanocomposites. J. Phys. Chem. C 112, 19841–19845 (2008)CrossRef C. Xu, X. Wang, J.W. Zhu, Graphene–metal particle nanocomposites. J. Phys. Chem. C 112, 19841–19845 (2008)CrossRef
41.
Zurück zum Zitat Y. Yuan, W. Jiang, Y.J. Wang, P. Shen, F.S. Li, P.Y. Li, F.Q. Zhao, H.X. Gao, Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 303, 354–359 (2014)CrossRef Y. Yuan, W. Jiang, Y.J. Wang, P. Shen, F.S. Li, P.Y. Li, F.Q. Zhao, H.X. Gao, Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 303, 354–359 (2014)CrossRef
42.
Zurück zum Zitat M. Abaker, A. Umar, S. Baskoutas, G.N. Dar, S.A. Zaidi, S.A. Al-Sayari, A. Al-Hajry, S.H. Kim, S.W. Hwang, A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J. Phys. D 44, 401–425 (2011) M. Abaker, A. Umar, S. Baskoutas, G.N. Dar, S.A. Zaidi, S.A. Al-Sayari, A. Al-Hajry, S.H. Kim, S.W. Hwang, A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J. Phys. D 44, 401–425 (2011)
43.
Zurück zum Zitat Y.T. Ngo, S.H. Hur, Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater. Res. Bull. 84, 168–176 (2016)CrossRef Y.T. Ngo, S.H. Hur, Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater. Res. Bull. 84, 168–176 (2016)CrossRef
44.
Zurück zum Zitat S. Stankovich, D.A. Dikin, R.D. Pinera, K.A. Kohlhaasa, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef S. Stankovich, D.A. Dikin, R.D. Pinera, K.A. Kohlhaasa, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef
45.
Zurück zum Zitat Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, H.B. Jin, Porous Fe3O4/Carbon core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 115, 13603–13608 (2011)CrossRef Y.J. Chen, G. Xiao, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y. Ma, P. Gao, C.L. Zhu, M.S. Cao, H.B. Jin, Porous Fe3O4/Carbon core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 115, 13603–13608 (2011)CrossRef
46.
Zurück zum Zitat M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2001)CrossRef M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2001)CrossRef
47.
Zurück zum Zitat X.B. Wang, Y.Y. Wang, F. Tian, H.J.M. Liang, K. Wang, X.H. Zhao, Z.S. Lu, K. Jiang, L. Yang, X.D. Lou, From the surface reaction control to gas-diffusion control: the synthesis of hierarchical porous SnO2 microspheres and their gas-sensing mechanism. J. Phys. Chem. C 119, 15963–15976 (2015)CrossRef X.B. Wang, Y.Y. Wang, F. Tian, H.J.M. Liang, K. Wang, X.H. Zhao, Z.S. Lu, K. Jiang, L. Yang, X.D. Lou, From the surface reaction control to gas-diffusion control: the synthesis of hierarchical porous SnO2 microspheres and their gas-sensing mechanism. J. Phys. Chem. C 119, 15963–15976 (2015)CrossRef
48.
Zurück zum Zitat F. Ren, L.P. Gao, Y.W. Yuan, Y. Zhang, A. Alqrni, O.M. Al-Dossary, J.Q. Xu, Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B 223, 914–920 (2016)CrossRef F. Ren, L.P. Gao, Y.W. Yuan, Y. Zhang, A. Alqrni, O.M. Al-Dossary, J.Q. Xu, Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B 223, 914–920 (2016)CrossRef
49.
Zurück zum Zitat P. Wang, X.F. Zhang, S. Gao, X.L. Cheng, L.L. Sui, Y.M. Xu, X. Zhao, H. Zhao, L.H. Huo, Superior acetone sensor based on single-crystalline α-Fe2O3 mesoporous nanospheres via [C12mim][BF4]-assistant synthesis. Sens. Actuators B 241, 967–977 (2017)CrossRef P. Wang, X.F. Zhang, S. Gao, X.L. Cheng, L.L. Sui, Y.M. Xu, X. Zhao, H. Zhao, L.H. Huo, Superior acetone sensor based on single-crystalline α-Fe2O3 mesoporous nanospheres via [C12mim][BF4]-assistant synthesis. Sens. Actuators B 241, 967–977 (2017)CrossRef
50.
Zurück zum Zitat G. Sun, H.L. Chen, Y.W. Li, G.Z. Ma, S.S. Zhang, T.K. Jia, J.L. Cao, X.D. Wang, H. Bala, Z.Y. Zhang, Synthesis and triethylamine sensing properties of mesoporous α-Fe2O3 microrods. Mater. Lett. 178, 213–216 (2016)CrossRef G. Sun, H.L. Chen, Y.W. Li, G.Z. Ma, S.S. Zhang, T.K. Jia, J.L. Cao, X.D. Wang, H. Bala, Z.Y. Zhang, Synthesis and triethylamine sensing properties of mesoporous α-Fe2O3 microrods. Mater. Lett. 178, 213–216 (2016)CrossRef
51.
Zurück zum Zitat P. Sun, W.N. Wang, Y.P. Liu, Y.F. Sun, J. Ma, G.Y. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B, 173, 52–57 (2012)CrossRef P. Sun, W.N. Wang, Y.P. Liu, Y.F. Sun, J. Ma, G.Y. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B, 173, 52–57 (2012)CrossRef
52.
Zurück zum Zitat D.Y. Zheng, H. H, X.J. Liu, S.H. Hu, Application of graphene in elctrochemical sensing. Curr. Opin. Colloid Interface Sci. 20, 383–405 (2015)CrossRef D.Y. Zheng, H. H, X.J. Liu, S.H. Hu, Application of graphene in elctrochemical sensing. Curr. Opin. Colloid Interface Sci. 20, 383–405 (2015)CrossRef
53.
Zurück zum Zitat J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140, 319–336 (2009)CrossRef J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140, 319–336 (2009)CrossRef
54.
Zurück zum Zitat Z.J. Li, Z.J. Lin, N.N. Wang, Y.W. Huang, J.Q. Wang, W. Liu, Y.Q. Fu, Z.G. Wang, N.N. Wang, Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection. Mater. Des. 110, 532–539 (2016)CrossRef Z.J. Li, Z.J. Lin, N.N. Wang, Y.W. Huang, J.Q. Wang, W. Liu, Y.Q. Fu, Z.G. Wang, N.N. Wang, Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection. Mater. Des. 110, 532–539 (2016)CrossRef
Metadaten
Titel
Facile synthesis of α-Fe2O3@graphene oxide nanocomposites for enhanced gas-sensing performance to ethanol
verfasst von
Xiaohua Jia
Dandan Lian
Bing Shi
Rongrong Dai
Changchao Li
Xiangyang Wu
Publikationsdatum
04.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 16/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7019-y

Weitere Artikel der Ausgabe 16/2017

Journal of Materials Science: Materials in Electronics 16/2017 Zur Ausgabe

Neuer Inhalt