Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2018

30.04.2018

Facile synthesis of Cu1.96S nanoparticles for enhanced energy density in flexible all-solid-state asymmetric supercapacitors

verfasst von: Yanwei Sui, Haihua Hu, Jiqiu Qi, Yaoyao Zhou, Fuxiang Wei, Yezeng He, Qingkun Meng, Yaojian Ren, Zhi Sun

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The exploration of copper sulfide materials have attracted significant attention for flexible all-solid-state asymmetric supercapacitor (FASC) application due to their advantages of cheapness and low toxicity. In this paper, three types of Cu1.96S samples with different morphologies were successfully fabricated by a facile hydrothermal method. The obtained Cu1.96S-12 nanoparticles (NPs) product exhibits a higher specific capacitance of 1928.6 F/g at a current density of 1 A/g, better rate capability (retain 79.2% of initial capacitance at the current density of 5 A/g) as well as much excellent cycling performance with 90.1% retention after 1000 cycles than those of Cu1.96S-6 and Cu1.96S-15 samples, which can be attributed to the unique structural properties (nanoparticle structure and well-developed mesoporous structure) and large specific surface area. Hence, a FASC device with high energy density has been successfully assembled using Cu1.96S-12 NPs as the positive electrode and active carbon (AC) as the negative electrode. The Cu1.96S-12//AC with an output voltage of 1.5 V shows superior electrochemical performance such as a high specific capacitance of 9.33 F/g at 1 A/g, excellent cyclability of 88.8% retention after 1000 charge/discharge cycles at a constant current density of 10 A/g, remarkable rate performance (~ 91.1% retention is obtained), outstanding flexibility (~ 99.1% specific capacitance maintained at the angle of 360°) and a high energy density of 10.50 Wh/kg compared to other recently reported data. This work provides a new insights into the actual application of Cu1.96S cathode materials for FASC devices and other energy storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A Simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016)CrossRef Y.Z. Zhang, T. Cheng, Y. Wang, W.Y. Lai, H. Pang, W. Huang, A Simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 28, 5242–5248 (2016)CrossRef
3.
Zurück zum Zitat X. Xiao, X. Peng, H.Y. Jin, T.Q. Li, C.C. Zhang, B. Gao, B. Hu, K.F. Huo, J. Zhou, Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater 25, 5091–5097 (2013)CrossRef X. Xiao, X. Peng, H.Y. Jin, T.Q. Li, C.C. Zhang, B. Gao, B. Hu, K.F. Huo, J. Zhou, Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater 25, 5091–5097 (2013)CrossRef
4.
5.
Zurück zum Zitat D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Chem. Soc. Rev. 44, 647 (2014)CrossRef D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Chem. Soc. Rev. 44, 647 (2014)CrossRef
6.
Zurück zum Zitat D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)CrossRef D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. Taberna, P. Simon, Nat. Nanotechnol. 5, 651 (2010)CrossRef
7.
Zurück zum Zitat Y. Li, X.Q. Yan, X. Zheng, H.N. Si, M.H. Li, Y.C. Liu, Y.H. Sun, Y.R. Jiang, Y. Zhang, Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. J. Mater. Chem. A 4, 17704–17710 (2016)CrossRef Y. Li, X.Q. Yan, X. Zheng, H.N. Si, M.H. Li, Y.C. Liu, Y.H. Sun, Y.R. Jiang, Y. Zhang, Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. J. Mater. Chem. A 4, 17704–17710 (2016)CrossRef
9.
Zurück zum Zitat H.C. Sun, D. Qin, S.Q. Huang, X.Z. Guo, D.M. Li, Y.H. Luo, Q.B. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 2630–2637 (2011)CrossRef H.C. Sun, D. Qin, S.Q. Huang, X.Z. Guo, D.M. Li, Y.H. Luo, Q.B. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 2630–2637 (2011)CrossRef
10.
Zurück zum Zitat M. Yu, Y. Zhang, Y. Zeng, M.S. Balogun, K. Mai, Z. Zhang, X. Lu, Y. Tong, Adv. Mater. 26, 4724–4729 (2014)CrossRef M. Yu, Y. Zhang, Y. Zeng, M.S. Balogun, K. Mai, Z. Zhang, X. Lu, Y. Tong, Adv. Mater. 26, 4724–4729 (2014)CrossRef
11.
12.
Zurück zum Zitat J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760 (2006)CrossRef J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313, 1760 (2006)CrossRef
13.
Zurück zum Zitat G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef
14.
Zurück zum Zitat J.Y. Liang, S.L. Chen, M.J. Xie, Y.Z. Wang, X.K. Guo, X.F. Guo, W.P. Ding, Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J. Mater. Chem. A. 2, 16884–16891 (2014)CrossRef J.Y. Liang, S.L. Chen, M.J. Xie, Y.Z. Wang, X.K. Guo, X.F. Guo, W.P. Ding, Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials. J. Mater. Chem. A. 2, 16884–16891 (2014)CrossRef
15.
Zurück zum Zitat P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. Wong, A. Umar, Nanoscale 6, 12120–12129 (2014)CrossRef P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. Wong, A. Umar, Nanoscale 6, 12120–12129 (2014)CrossRef
16.
Zurück zum Zitat P. Yang, Y. Chen, X. Yu, P. Qiang, K. Wang, X. Cai, S. Tan, P. Liu, J. Song, W. Mai, Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy 10, 108–116 (2014)CrossRef P. Yang, Y. Chen, X. Yu, P. Qiang, K. Wang, X. Cai, S. Tan, P. Liu, J. Song, W. Mai, Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy 10, 108–116 (2014)CrossRef
17.
Zurück zum Zitat S.Y. Lee, K.H. Choi, W.S. Choi, Y.H. Kwon, H.-R. Jung, H.-C. Shin, J.Y. Kim, Energy Environ. Sci 6, 2414 (2013)CrossRef S.Y. Lee, K.H. Choi, W.S. Choi, Y.H. Kwon, H.-R. Jung, H.-C. Shin, J.Y. Kim, Energy Environ. Sci 6, 2414 (2013)CrossRef
18.
Zurück zum Zitat R. Rakhi, W. Chen, D. Cha, H. Alshareef, Nano Lett. 12, 2559–2567 (2012)CrossRef R. Rakhi, W. Chen, D. Cha, H. Alshareef, Nano Lett. 12, 2559–2567 (2012)CrossRef
19.
Zurück zum Zitat G. Zhang, W. Li, K. Xie, F. Yu, H. Huang, Adv. Funct. Mater. 23, 3675–3681 (2013)CrossRef G. Zhang, W. Li, K. Xie, F. Yu, H. Huang, Adv. Funct. Mater. 23, 3675–3681 (2013)CrossRef
20.
Zurück zum Zitat J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237–6243 (2013)CrossRef J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237–6243 (2013)CrossRef
21.
Zurück zum Zitat R. Wang, J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Y.L. Zhao, Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater. Lett. 184, 181–184 (2016)CrossRef R. Wang, J.Q. Qi, Y.W. Sui, Y. Chang, Y.Z. He, F.X. Wei, Q.K. Meng, Z. Sun, Y.L. Zhao, Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater. Lett. 184, 181–184 (2016)CrossRef
22.
Zurück zum Zitat X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690–1696 (2012)CrossRef X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690–1696 (2012)CrossRef
23.
Zurück zum Zitat J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Adv. Mater. 24, 5166–5180 (2012)CrossRef J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Adv. Mater. 24, 5166–5180 (2012)CrossRef
24.
Zurück zum Zitat X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. 54, 5331–5335 (2015)CrossRef X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew. Chem. Int. Ed. 54, 5331–5335 (2015)CrossRef
25.
Zurück zum Zitat M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10, 313–318 (2015)CrossRef M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10, 313–318 (2015)CrossRef
26.
Zurück zum Zitat H. Zhu, J. Zhang, Z.R. Yan, M. Du, Q. Wang, G. Gao, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 27, 4752–4759 (2015)CrossRef H. Zhu, J. Zhang, Z.R. Yan, M. Du, Q. Wang, G. Gao, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Adv. Mater. 27, 4752–4759 (2015)CrossRef
27.
Zurück zum Zitat H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Adv.Mater. 27, 1117–1123 (2015)CrossRef H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Adv.Mater. 27, 1117–1123 (2015)CrossRef
28.
Zurück zum Zitat S.J. Muhammad, S.G. Dai, M.J. Wang, Y. Xi, Q. Lang, D.L. Guo, C.G. Hu, Nanoscale, faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7, 13610–13618 (2015)CrossRef S.J. Muhammad, S.G. Dai, M.J. Wang, Y. Xi, Q. Lang, D.L. Guo, C.G. Hu, Nanoscale, faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7, 13610–13618 (2015)CrossRef
29.
Zurück zum Zitat H. Hu, J. Qi, Y. Sui et al., Facile synthesis of copper sulfdes with different shapes for high-performance supercapacitors. J. Mater. Sci.: Mater. Electron. 28, 10720–10729 (2017) H. Hu, J. Qi, Y. Sui et al., Facile synthesis of copper sulfdes with different shapes for high-performance supercapacitors. J. Mater. Sci.: Mater. Electron. 28, 10720–10729 (2017)
31.
Zurück zum Zitat S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater. Sci.: Mater. Electron. 27, 4163–4171 (2016) S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater. Sci.: Mater. Electron. 27, 4163–4171 (2016)
32.
Zurück zum Zitat D. Bibekananda, B. Jayaraman, H.K. Nam, H.L. Joong, Enhanced electrochemical and photocatalytic performance of core-shell CuS@carbon quantum Dots@carbon hollow nanospheres. ACS Appl. Mater. Interfaces 9, 2459–2468 (2017)CrossRef D. Bibekananda, B. Jayaraman, H.K. Nam, H.L. Joong, Enhanced electrochemical and photocatalytic performance of core-shell CuS@carbon quantum Dots@carbon hollow nanospheres. ACS Appl. Mater. Interfaces 9, 2459–2468 (2017)CrossRef
33.
Zurück zum Zitat J. Zhang, H.J. Feng, J.Q. Yang, Q. Qin, H.M. Fan, C.Y. Wei, W.J. Zheng, Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 21735–21744 (2015)CrossRef J. Zhang, H.J. Feng, J.Q. Yang, Q. Qin, H.M. Fan, C.Y. Wei, W.J. Zheng, Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 21735–21744 (2015)CrossRef
34.
Zurück zum Zitat Y.W. Lee, B.S. Kim, J. Hong, J. Lee, S. Pak, H.S. Jang, D. Whang, S.N. Cha, J.I. Sohn, J.M. Kim, A pseudo-capacitive chalcogenide-based electrode with dense 1-dimensional nanoarrays for enhanced energy density in asymmetric supercapacitors. J. Mater. Chem. A 4, 10084–10090 (2016)CrossRef Y.W. Lee, B.S. Kim, J. Hong, J. Lee, S. Pak, H.S. Jang, D. Whang, S.N. Cha, J.I. Sohn, J.M. Kim, A pseudo-capacitive chalcogenide-based electrode with dense 1-dimensional nanoarrays for enhanced energy density in asymmetric supercapacitors. J. Mater. Chem. A 4, 10084–10090 (2016)CrossRef
35.
Zurück zum Zitat H. Peng, G. Ma, K. Sun, J. Mu, H. Wang, Z. Lei, J. Mater. Chem. A 2, 3303–3307 (2014)CrossRef H. Peng, G. Ma, K. Sun, J. Mu, H. Wang, Z. Lei, J. Mater. Chem. A 2, 3303–3307 (2014)CrossRef
36.
Zurück zum Zitat W.B. Fu, W.H. Han, H.M. Zha, J.F. Mei, Y.X. Li, Z.M. Zhang, E.Q. Xie, Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors. Phys. Chem. Chem. Phys. 18, 24471–24476 (2016)CrossRef W.B. Fu, W.H. Han, H.M. Zha, J.F. Mei, Y.X. Li, Z.M. Zhang, E.Q. Xie, Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors. Phys. Chem. Chem. Phys. 18, 24471–24476 (2016)CrossRef
37.
Zurück zum Zitat R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRef R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. J. 331, 527–535 (2018)CrossRef
38.
Zurück zum Zitat K.J. Huang, J.Z. Zhang, Y. Liu, Y.M. Liu, Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor. Int. J. Hydrogen Energy 40, 10158–10167 (2015)CrossRef K.J. Huang, J.Z. Zhang, Y. Liu, Y.M. Liu, Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor. Int. J. Hydrogen Energy 40, 10158–10167 (2015)CrossRef
39.
Zurück zum Zitat H. Li, Z. Kang, Y. Liu, S.T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)CrossRef H. Li, Z. Kang, Y. Liu, S.T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)CrossRef
40.
Zurück zum Zitat J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn, M. Titirici, Biomass-drived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int. Ed. 54, 4463–4468 (2015)CrossRef J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn, M. Titirici, Biomass-drived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem. Int. Ed. 54, 4463–4468 (2015)CrossRef
41.
Zurück zum Zitat S. Yu, J. Liu, W. Zhu, Z.T. Hu, T.T. Lim, X. Yan, Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation. Sci. Rep. 5, 16369 (2015)CrossRef S. Yu, J. Liu, W. Zhu, Z.T. Hu, T.T. Lim, X. Yan, Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation. Sci. Rep. 5, 16369 (2015)CrossRef
42.
Zurück zum Zitat F. Laffineur, J. Delhalle, S. Guittard, S. Geribaldi, Z. Mekhalif, Mechanically polished copper surfaces modified with n-dodecanethiol and 3-perfluorooctyl-propanethiol. Colloids Surf. A 198–200, 817–827 (2002)CrossRef F. Laffineur, J. Delhalle, S. Guittard, S. Geribaldi, Z. Mekhalif, Mechanically polished copper surfaces modified with n-dodecanethiol and 3-perfluorooctyl-propanethiol. Colloids Surf. A 198–200, 817–827 (2002)CrossRef
43.
Zurück zum Zitat A.B.F. Martinson, S.C. Riha, E. Thimsen, J.W. Elam, M.J. Pellin, Energy Environ. Sci. 6, 1868; (2013)CrossRef A.B.F. Martinson, S.C. Riha, E. Thimsen, J.W. Elam, M.J. Pellin, Energy Environ. Sci. 6, 1868; (2013)CrossRef
44.
Zurück zum Zitat R.B. Wu, D.P. Wang, V. Kumar, K. Zhou, A. Law, P. Lee, J. Lou, Z. Chen, MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem. Commun. 51, 3109–3112 (2015)CrossRef R.B. Wu, D.P. Wang, V. Kumar, K. Zhou, A. Law, P. Lee, J. Lou, Z. Chen, MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem. Commun. 51, 3109–3112 (2015)CrossRef
45.
Zurück zum Zitat J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 11, 4774–4779 (2011)CrossRef J. Zhang, J.G. Yu, Y.M. Zhang, Q. Li, J.R. Gong, Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 11, 4774–4779 (2011)CrossRef
46.
Zurück zum Zitat B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484–4490 (2012)CrossRef B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484–4490 (2012)CrossRef
47.
Zurück zum Zitat S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 4851–4860 (2015)CrossRef S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 4851–4860 (2015)CrossRef
48.
Zurück zum Zitat V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef
49.
Zurück zum Zitat M.C. Liu, L.B. Kong, L. Kang, X. Li, F.C. Walsh, M. Xing, C. Lu, X.J. Ma, Y.C. Luo, J. Mater. Chem. A 2, 4919–4926 (2014)CrossRef M.C. Liu, L.B. Kong, L. Kang, X. Li, F.C. Walsh, M. Xing, C. Lu, X.J. Ma, Y.C. Luo, J. Mater. Chem. A 2, 4919–4926 (2014)CrossRef
50.
Zurück zum Zitat X. Zheng, X. Yan, Y. Sun, Z. Bai, G. Zhang, Y. Shen, Q. Liang, Y. Zhang, ACS Appl. Mater. Interfaces 7, 2480 (2015)CrossRef X. Zheng, X. Yan, Y. Sun, Z. Bai, G. Zhang, Y. Shen, Q. Liang, Y. Zhang, ACS Appl. Mater. Interfaces 7, 2480 (2015)CrossRef
52.
Zurück zum Zitat Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, J.B. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy 20, 294–304 (2016)CrossRef Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, J.B. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy 20, 294–304 (2016)CrossRef
53.
Zurück zum Zitat D.Z. Kong, C.W. Cheng, Y. Wang, J.I. Wong, Y.P. Yang, H.Y. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich structured nanoneedle arrays: towards highperformance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015)CrossRef D.Z. Kong, C.W. Cheng, Y. Wang, J.I. Wong, Y.P. Yang, H.Y. Yang, Three-dimensional Co3O4@C@Ni3S2 sandwich structured nanoneedle arrays: towards highperformance flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 16150–16161 (2015)CrossRef
55.
Zurück zum Zitat C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009)CrossRef C. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009)CrossRef
56.
Zurück zum Zitat Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174–182 (2013)CrossRef Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174–182 (2013)CrossRef
57.
Zurück zum Zitat Z. Tian, H.L. Dou, B. Zhang, W.H. Fan, X.M. Wang, Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochim. Acta 237, 109–118 (2017)CrossRef Z. Tian, H.L. Dou, B. Zhang, W.H. Fan, X.M. Wang, Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochim. Acta 237, 109–118 (2017)CrossRef
58.
Metadaten
Titel
Facile synthesis of Cu1.96S nanoparticles for enhanced energy density in flexible all-solid-state asymmetric supercapacitors
verfasst von
Yanwei Sui
Haihua Hu
Jiqiu Qi
Yaoyao Zhou
Fuxiang Wei
Yezeng He
Qingkun Meng
Yaojian Ren
Zhi Sun
Publikationsdatum
30.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9204-z

Weitere Artikel der Ausgabe 13/2018

Journal of Materials Science: Materials in Electronics 13/2018 Zur Ausgabe

Neuer Inhalt