Skip to main content
Erschienen in: Neural Processing Letters 2/2017

20.07.2016

Factor Augmented Artificial Neural Network Model

verfasst von: Ali Babikir, Henry Mwambi

Erschienen in: Neural Processing Letters | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper brings together two important developments in forecasting literature; the artificial neural networks and factor models. The paper introduces the factor augmented artificial neural network (FAANN) hybrid model in order to produce a more accurate forecasting. Theoretical and empirical findings have indicated that integration of various models can be an effective way of improving on their predictive performance, especially when the models in the ensemble are quite different. The proposed model is used to forecast three time series variables using large South African monthly panel, namely, deposit rate, gold mining share prices and Long term interest rate, using monthly data over the in-sample period (training set) 1992:1–2006:12. The variables are used to compute out-of-sample (testing set) results for 3, 6 and 12 month-ahead forecasts for the period of 2007:1–2011:12. The out-of-sample root mean square error findings show that the FAANN model yields substantial improvements over the autoregressive AR benchmark model and standard dynamic factor model (DFM). The Diebold–Mariano test results also further confirm the superiority of the FAANN model forecast performance over the AR benchmark model and the DFM model forecasts. The superiority of the FAANN model is due to the ANN flexibility to account for potentially complex nonlinear relationships that are not easily captured by linear models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The approach works as follows; Suppose a factor model is represented as \(X_{it} =\lambda ^{\prime }_i F_t +e_{it}\) where \(X_{it}\) is the observed datum for the \(i\mathrm{th}\) series at time \(t\,(i=1,\ldots , N; t=1,\ldots ,T); F_t \) is a vector \((r\times 1)\) of common factors; \(\lambda _i\) is a vector \(\left( {r\times 1} \right) \) of factor loadings; and \(e_{it}\) is the idiosyncratic component of \(X_{it}\). The right hand side variables are not observed. The method of principal components minimizes \(V\left( r \right) =\textit{min}_{{\Lambda }, F} \left( {NT} \right) ^{-1}\mathop {\sum }_{i=1}^N \mathop {\sum }_{t=1}^T \left( {X_{it} -\lambda ^{\prime }_i F_t} \right) ^{2}\) where \(\varLambda =\left( {\lambda _1, \ldots ,\lambda _N} \right) \). Concentrating out \(\Lambda \) and using the normalization that \(F^{\prime }F/T=I_r\), where \(I_r\) is \(r\times r\) identity matrix, the problem is identical to maximizing \(\textit{tr}\left( {{F}^{\prime }}(XX^{\prime })F\right) \). The estimated factor matrix, denoted by \(\tilde{F}\), is \(\sqrt{T}\) times the eigenvectors corresponding to the r largest eigenvalues of the \(T\times T\) matrix \(X^{\prime }X\), and \(\tilde{\varLambda }^{\prime }=(\tilde{F}^{\prime }\tilde{F})^{-1}\tilde{F} X=\tilde{F} X/T\) is the corresponding loading matrix.
 
2
In this paper we choose iterated forecast instead of direct forecast. Marcellino et al. [27] found that iterated forecast using AIC lag length selection performed better than direct forecasts, especially when forecast horizon increases. They argued that iterated forecast models with lag length selected based on information criterion are good estimates for the best linear predictor.
 
3
The data sources are the South Africa Reserve Bank, ABSA Bank, Stats South Africa, National Association of Automobile Manufacturers of South Africa (NAAMSA), South African Revenue Service (SARS), Quantec and World Bank.
 
4
The RMSE statistic can be defined as \(\sqrt{\frac{1}{N}{\sum }\left( {Y_{t+n} -{}_{t} \hat{Y}_{t+n}}\right) ^{2}}\), where \(Y_{t+n}\) denotes the actual value of a specific variable in period \(t+n\) and \({}_t\hat{Y}_{t+n}\) is the forecast made in period t for \(t+n.\)
 
Literatur
1.
Zurück zum Zitat Aruoba S, Diebold F, Scotti C (2009) Real-time measurement of business conditions. J Bus Econ Stat 27:417–427MathSciNetCrossRef Aruoba S, Diebold F, Scotti C (2009) Real-time measurement of business conditions. J Bus Econ Stat 27:417–427MathSciNetCrossRef
4.
Zurück zum Zitat Bai J, Ng S (2007) Determining the number of primitive shocks. J Bus Econ Stat 25(1):52–60CrossRef Bai J, Ng S (2007) Determining the number of primitive shocks. J Bus Econ Stat 25(1):52–60CrossRef
6.
Zurück zum Zitat Banerjee A, Marcellino M, Masten I (2008) Forecasting macroeconomic variables using diffusion indexes in short samples with structural change. In: Rapach D, Wohar M (eds) Forecasting in the presence of structural breaks and model uncertainty. Emerald Group, Bingley Banerjee A, Marcellino M, Masten I (2008) Forecasting macroeconomic variables using diffusion indexes in short samples with structural change. In: Rapach D, Wohar M (eds) Forecasting in the presence of structural breaks and model uncertainty. Emerald Group, Bingley
7.
Zurück zum Zitat Banerjee A, Marcellino M (2008) Factor augmented error correction models. CEPR Discussion Paper, 6707 Banerjee A, Marcellino M (2008) Factor augmented error correction models. CEPR Discussion Paper, 6707
8.
Zurück zum Zitat Baxt WG (1992) Improving the accuracy of an artificial neural network using multiple differently trained networks. Neural Comput 4:772–780CrossRef Baxt WG (1992) Improving the accuracy of an artificial neural network using multiple differently trained networks. Neural Comput 4:772–780CrossRef
9.
Zurück zum Zitat Bernanke B, Boivin J, Eliasz P (2005) Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach. Q J Econ 120:387–422 Bernanke B, Boivin J, Eliasz P (2005) Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach. Q J Econ 120:387–422
10.
Zurück zum Zitat Boivin J, Giannoni M (2006) DSGE models in a data-rich environment. Technical Report, Columbia Business School, Columbia University Boivin J, Giannoni M (2006) DSGE models in a data-rich environment. Technical Report, Columbia Business School, Columbia University
11.
Zurück zum Zitat Chamberlain G, Rothschild M (1983) Arbitrage factor structure and mean-variance analysis in large markets. Econometrica 51:1305–1324MathSciNetCrossRefMATH Chamberlain G, Rothschild M (1983) Arbitrage factor structure and mean-variance analysis in large markets. Econometrica 51:1305–1324MathSciNetCrossRefMATH
12.
Zurück zum Zitat Chen A, Leung MT, Hazem D (2003) Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Comput Oper Res 30:901–923CrossRefMATH Chen A, Leung MT, Hazem D (2003) Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Comput Oper Res 30:901–923CrossRefMATH
13.
Zurück zum Zitat Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–263 Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–263
14.
Zurück zum Zitat Dufour JM, Pelletier D (2013) Practical methods for modelling weak VARMA processes: identification, estimation and specification with a macroeconomic application. Discussion Paper Dufour JM, Pelletier D (2013) Practical methods for modelling weak VARMA processes: identification, estimation and specification with a macroeconomic application. Discussion Paper
15.
Zurück zum Zitat Favero C, Marcellino M, Neglia F (2005) Principal components at work: the empirical analysis of monetary policy with large datasets. J Appl Econom 20:603–620CrossRef Favero C, Marcellino M, Neglia F (2005) Principal components at work: the empirical analysis of monetary policy with large datasets. J Appl Econom 20:603–620CrossRef
16.
Zurück zum Zitat Forni M, Hallin M, Lippi M, Reichlin L (2000) The generalized factor model: identification and estimation. Rev Econ Stat 82:540–554CrossRefMATH Forni M, Hallin M, Lippi M, Reichlin L (2000) The generalized factor model: identification and estimation. Rev Econ Stat 82:540–554CrossRefMATH
17.
18.
Zurück zum Zitat Forni M, Hallin M, Lippi M, Reichlin L (2005) The generalized dynamic factor model, one sided estimation and forecasting. J Am Stat Assoc 100(471):830–840MathSciNetCrossRefMATH Forni M, Hallin M, Lippi M, Reichlin L (2005) The generalized dynamic factor model, one sided estimation and forecasting. J Am Stat Assoc 100(471):830–840MathSciNetCrossRefMATH
19.
Zurück zum Zitat Geweke J (1977) The dynamic factor analysis of economic time series. In: Aigner DJ, Goldberger AS (eds) Latent variables in socio-economic models. North Holland, Amsterdam, pp 365–383 Geweke J (1977) The dynamic factor analysis of economic time series. In: Aigner DJ, Goldberger AS (eds) Latent variables in socio-economic models. North Holland, Amsterdam, pp 365–383
20.
Zurück zum Zitat Giannone D, Reichlin L, Small D (2008) Nowcasting: the real-time informational content of macroeconomic data. J Monet Econ 55:665–676CrossRef Giannone D, Reichlin L, Small D (2008) Nowcasting: the real-time informational content of macroeconomic data. J Monet Econ 55:665–676CrossRef
21.
Zurück zum Zitat Greg T, Hu S (1999) Forecasting GDP growth using artificial neural networks. Working Paper 3, Bank of Canada Greg T, Hu S (1999) Forecasting GDP growth using artificial neural networks. Working Paper 3, Bank of Canada
22.
Zurück zum Zitat Hallin M, Liska R (2007) Determining the number of factors in the general dynamic factor model. J Am Stat Assoc 102:603–617MathSciNetCrossRefMATH Hallin M, Liska R (2007) Determining the number of factors in the general dynamic factor model. J Am Stat Assoc 102:603–617MathSciNetCrossRefMATH
23.
Zurück zum Zitat Jorge N, Wright Stephen J (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH Jorge N, Wright Stephen J (2006) Numerical optimization, 2nd edn. Springer, BerlinMATH
24.
Zurück zum Zitat Kapetanios G, Marcellino M (2010) Factor-GMM estimation with large sets of possibly weak instruments. Comput Stat Data Anal 54:2655–2675MathSciNetCrossRefMATH Kapetanios G, Marcellino M (2010) Factor-GMM estimation with large sets of possibly weak instruments. Comput Stat Data Anal 54:2655–2675MathSciNetCrossRefMATH
25.
Zurück zum Zitat Khashei M, Bijari M (2010) An artificial neural network (p, d, q) model for time series forecasting. Expert Syst Appl 37:479–489CrossRefMATH Khashei M, Bijari M (2010) An artificial neural network (p, d, q) model for time series forecasting. Expert Syst Appl 37:479–489CrossRefMATH
26.
Zurück zum Zitat Kihoro JM, Otieno RO, Wafula C (2004) Seasonal time series forecasting: a comparative study of ARIMA and ANN models. Afr J Sci Technol 5(2):41–49 Kihoro JM, Otieno RO, Wafula C (2004) Seasonal time series forecasting: a comparative study of ARIMA and ANN models. Afr J Sci Technol 5(2):41–49
27.
Zurück zum Zitat Marcellino M, Stock JH, Watson MW (2006) A comparison of direct and iterated multistep AR methods for forecasting macroeconomic series. J Econom 135:499–526MathSciNetCrossRefMATH Marcellino M, Stock JH, Watson MW (2006) A comparison of direct and iterated multistep AR methods for forecasting macroeconomic series. J Econom 135:499–526MathSciNetCrossRefMATH
28.
Zurück zum Zitat Ng S, Stevanovic D (2012) Factor augmented autoregressive distributed lag models. Mimeo, Columbia University, New York Ng S, Stevanovic D (2012) Factor augmented autoregressive distributed lag models. Mimeo, Columbia University, New York
29.
30.
Zurück zum Zitat Philip AA, Taofiki AA, Bidemi AA (2011) Artificial neural network model for forecasting foreign exchange rate. World Comput Sci Inf Technol J 1(3):110–118 Philip AA, Taofiki AA, Bidemi AA (2011) Artificial neural network model for forecasting foreign exchange rate. World Comput Sci Inf Technol J 1(3):110–118
31.
Zurück zum Zitat Sargent TJ, Sims CA (1977) Business cycle modeling without pretending to have too much a priori economic theory. In: Sims C (ed) New methods in business research. Federal Reserve Bank of Minneapolis, Minneapolis Sargent TJ, Sims CA (1977) Business cycle modeling without pretending to have too much a priori economic theory. In: Sims C (ed) New methods in business research. Federal Reserve Bank of Minneapolis, Minneapolis
32.
Zurück zum Zitat Stock JH, Watson MW (2005) Implications of dynamic factor models for VAR analysis. Manuscript. Princeton University, Princeton Stock JH, Watson MW (2005) Implications of dynamic factor models for VAR analysis. Manuscript. Princeton University, Princeton
33.
Zurück zum Zitat Stock JH, Watson MW (2002a) Forecasting using principal components from a large number of predictors. J Am Stat Assoc 97:147–162MathSciNetCrossRefMATH Stock JH, Watson MW (2002a) Forecasting using principal components from a large number of predictors. J Am Stat Assoc 97:147–162MathSciNetCrossRefMATH
34.
35.
Zurück zum Zitat Tseng FM, Yu HC, Tzeng GH (2002) Combining neural network model with seasonal time series ARIMA model. Technol Forecast Soc Change 69:71–87CrossRef Tseng FM, Yu HC, Tzeng GH (2002) Combining neural network model with seasonal time series ARIMA model. Technol Forecast Soc Change 69:71–87CrossRef
36.
Zurück zum Zitat Yu L, Wang S, Lai K (2005) A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Comput Oper Res 32:2523–2541CrossRefMATH Yu L, Wang S, Lai K (2005) A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates. Comput Oper Res 32:2523–2541CrossRefMATH
37.
Zurück zum Zitat Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62CrossRef Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14:35–62CrossRef
38.
Zurück zum Zitat Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRefMATH Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175CrossRefMATH
39.
Zurück zum Zitat Zhang GP (2007) A neural network ensemble method with jittered training data for time series forecasting. Inf Sci 177:5329–5346CrossRef Zhang GP (2007) A neural network ensemble method with jittered training data for time series forecasting. Inf Sci 177:5329–5346CrossRef
Metadaten
Titel
Factor Augmented Artificial Neural Network Model
verfasst von
Ali Babikir
Henry Mwambi
Publikationsdatum
20.07.2016
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2017
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-016-9538-6

Weitere Artikel der Ausgabe 2/2017

Neural Processing Letters 2/2017 Zur Ausgabe

Neuer Inhalt