Skip to main content

2017 | OriginalPaper | Buchkapitel

36. Failure Processes Governing High Rate Impact Resistance of Epoxy Resins Filled with Core Shell Rubber Nanoparticles

verfasst von : Erich D. Bain, Daniel B. Knorr Jr., Adam D. Richardson, Kevin A. Masser, Jian Yu, Joseph L. Lenhart

Erschienen in: Dynamic Behavior of Materials, Volume 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Epoxy resins are classically toughened by rubber additives, but the effectiveness of rubber toughening tends to diminish with increasing strain rate, decreasing temperature, and decreasing matrix ductility. In this study we demonstrate that low loadings of 100–200 nm core-shell rubber (CSR) particulate additives can improve high strain rate (104–105 s−1) impact resistance by nearly 200 % for epoxy resins with glass transition temperatures T g in a range between 60 and 110 °C, without large reductions in T g or stiffness. Size and surface chemistry of the CSR particles influence the ballistic response, with 200 nm diameter, weakly bound, poorly dispersed CSR particles providing the greatest toughening performance at low filler loadings and high rates. Impact resistance for a systematic series of CSR modified epoxies covers a transition from brittle to tough behavior, where the failure mechanism changes with effective fracture resistance. For brittle resins, failure is dominated by initiation of Hertzian cone fracture which depends strongly on fracture toughness K IC , while for tough resins, failure is dominated by plastic yield at the impact site and is independent of fracture toughness above a minimum K IC value of approximately 1.2–1.5 MPa-m1/2. Interestingly, quasistatic mechanical properties are reasonably effective qualitative predictors of high rate impact resistance, suggesting that the toughening mechanisms of CSR particles are similar over the rates studied here. The insights gained from this study are valuable for design of next generation adhesives, polymers, and polymer composite matrices for lightweight protective applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grossman, E., Gouzman, I.: Space environment effects on polymers in low earth orbit. Nucl. Instrum. Methods Phys. Res. B 208, 48–57 (2003)CrossRef Grossman, E., Gouzman, I.: Space environment effects on polymers in low earth orbit. Nucl. Instrum. Methods Phys. Res. B 208, 48–57 (2003)CrossRef
2.
Zurück zum Zitat Committee on Opportunities in Protection Materials Science Technology for Future Army Applications and National Research Council: Opportunities in Protection Materials Science and Technology for Future Army Applications. The National Academies Press, Washington (2011) Committee on Opportunities in Protection Materials Science Technology for Future Army Applications and National Research Council: Opportunities in Protection Materials Science and Technology for Future Army Applications. The National Academies Press, Washington (2011)
3.
Zurück zum Zitat Crawford, E., Lesser, A.J.: The effect of network architecture on the thermal and mechanical behavior of epoxy resins. J. Polym. Sci. Polym. Phys. 36(8), 1371–1382 (1998)CrossRef Crawford, E., Lesser, A.J.: The effect of network architecture on the thermal and mechanical behavior of epoxy resins. J. Polym. Sci. Polym. Phys. 36(8), 1371–1382 (1998)CrossRef
4.
Zurück zum Zitat Naik, N.K., Shrirao, P.: Composite structures under ballistic impact. Compos. Struct. 66(1-4), 579–590 (2004)CrossRef Naik, N.K., Shrirao, P.: Composite structures under ballistic impact. Compos. Struct. 66(1-4), 579–590 (2004)CrossRef
5.
Zurück zum Zitat Carrillo, J.G., et al.: Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix. Polym. Test. 31(4), 512–519 (2012)CrossRef Carrillo, J.G., et al.: Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix. Polym. Test. 31(4), 512–519 (2012)CrossRef
6.
Zurück zum Zitat Hsieh, T.H., et al.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45(5), 1193–1210 (2009)CrossRef Hsieh, T.H., et al.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45(5), 1193–1210 (2009)CrossRef
7.
Zurück zum Zitat Sprenger, S.: Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles. J. Mater. Sci. 49(6), 2391–2402 (2013)CrossRef Sprenger, S.: Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles. J. Mater. Sci. 49(6), 2391–2402 (2013)CrossRef
8.
Zurück zum Zitat David, N.V., Gao, X.L., Zheng, J.Q.: Ballistic resistant body armor: contemporary and prospective materials and related protection mechanisms. Appl. Mech. Rev. 62(5), 050802 (2009)CrossRef David, N.V., Gao, X.L., Zheng, J.Q.: Ballistic resistant body armor: contemporary and prospective materials and related protection mechanisms. Appl. Mech. Rev. 62(5), 050802 (2009)CrossRef
9.
Zurück zum Zitat Naik, N.K., et al.: High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies. Mater. Sci. Eng. A 528(3), 846–854 (2011)CrossRef Naik, N.K., et al.: High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies. Mater. Sci. Eng. A 528(3), 846–854 (2011)CrossRef
10.
Zurück zum Zitat Knorr Jr., D.B., et al.: Glass transition dependence of ultrahigh strain rate response in amine cured epoxy resins. Polymer 53(25), 5917–5923 (2012)CrossRef Knorr Jr., D.B., et al.: Glass transition dependence of ultrahigh strain rate response in amine cured epoxy resins. Polymer 53(25), 5917–5923 (2012)CrossRef
11.
Zurück zum Zitat Masser, K.A., et al.: Relating structure and chain dynamics to ballistic performance in transparent epoxy networks exhibiting nanometer scale heterogeneity. Polymer 58, 96–106 (2015)CrossRef Masser, K.A., et al.: Relating structure and chain dynamics to ballistic performance in transparent epoxy networks exhibiting nanometer scale heterogeneity. Polymer 58, 96–106 (2015)CrossRef
12.
Zurück zum Zitat Knorr, D.B., et al.: Overcoming the structural versus energy dissipation trade-off in highly crosslinked polymer networks: ultrahigh strain rate response in polydicyclopentadiene. Compos. Sci. Technol. 114, 17–25 (2015)CrossRef Knorr, D.B., et al.: Overcoming the structural versus energy dissipation trade-off in highly crosslinked polymer networks: ultrahigh strain rate response in polydicyclopentadiene. Compos. Sci. Technol. 114, 17–25 (2015)CrossRef
13.
Zurück zum Zitat McGarry, F.J.: Building design with fibre reinforced materials. Proc. R Soc. Lond. A Math. Phys. Sci. 319(1536), 59–68 (1970)CrossRef McGarry, F.J.: Building design with fibre reinforced materials. Proc. R Soc. Lond. A Math. Phys. Sci. 319(1536), 59–68 (1970)CrossRef
14.
Zurück zum Zitat Kinloch, A.J., et al.: Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24, 1341–1354 (1983)CrossRef Kinloch, A.J., et al.: Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24, 1341–1354 (1983)CrossRef
15.
Zurück zum Zitat Yee, A.F., Pearson, R.A.: Toughening mechanisms in elastomer-modified epoxies Part 1 mechanical studies. J. Mater. Sci. 21, 2462–2474 (1986)CrossRef Yee, A.F., Pearson, R.A.: Toughening mechanisms in elastomer-modified epoxies Part 1 mechanical studies. J. Mater. Sci. 21, 2462–2474 (1986)CrossRef
16.
Zurück zum Zitat Spanoudakis, J., Young, R.J.: Crack propagation in a glass particle-filled epoxy resin Part 1—effect of particle volume fraction and size. J. Mater. Sci. 19, 473–486 (1984)CrossRef Spanoudakis, J., Young, R.J.: Crack propagation in a glass particle-filled epoxy resin Part 1—effect of particle volume fraction and size. J. Mater. Sci. 19, 473–486 (1984)CrossRef
17.
Zurück zum Zitat Hsieh, T.H., et al.: The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26), 6284–6294 (2010)CrossRef Hsieh, T.H., et al.: The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51(26), 6284–6294 (2010)CrossRef
18.
Zurück zum Zitat McGrath, L.M., et al.: Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites. Polymer 49(4), 999–1014 (2008)CrossRef McGrath, L.M., et al.: Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites. Polymer 49(4), 999–1014 (2008)CrossRef
19.
Zurück zum Zitat Sue, H.J., et al.: Optimization of mode-I fracture toughness of high-performance epoxies by using designed core-shell rubber particles. Adv. Chem. Ser. 233, 259–291 (1993)CrossRef Sue, H.J., et al.: Optimization of mode-I fracture toughness of high-performance epoxies by using designed core-shell rubber particles. Adv. Chem. Ser. 233, 259–291 (1993)CrossRef
20.
Zurück zum Zitat Blanco, M., et al.: Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures: morphology, thermal behavior, and mechanical properties. J. Appl. Polym. Sci. 114(3), 1753–1760 (2009)CrossRef Blanco, M., et al.: Thermoplastic-modified epoxy resins cured with different functionalities amine mixtures: morphology, thermal behavior, and mechanical properties. J. Appl. Polym. Sci. 114(3), 1753–1760 (2009)CrossRef
21.
Zurück zum Zitat Fischer, M.: Properties and failure of polymers with tailored distances between cross-links. Adv. Polym. Sci. 100, 313–355 (1992)CrossRef Fischer, M.: Properties and failure of polymers with tailored distances between cross-links. Adv. Polym. Sci. 100, 313–355 (1992)CrossRef
22.
Zurück zum Zitat Garg, A.C., Mai, Y.W.: Failure mechanisms in toughened epoxy resins—a review. Compos. Sci. Technol. 31(3), 179–223 (1988)CrossRef Garg, A.C., Mai, Y.W.: Failure mechanisms in toughened epoxy resins—a review. Compos. Sci. Technol. 31(3), 179–223 (1988)CrossRef
23.
Zurück zum Zitat Bagheri, R., Marouf, B.T., Pearson, R.A.: Rubber-toughened epoxies: a critical review. Polym. Rev. 49(3), 201–225 (2009)CrossRef Bagheri, R., Marouf, B.T., Pearson, R.A.: Rubber-toughened epoxies: a critical review. Polym. Rev. 49(3), 201–225 (2009)CrossRef
24.
Zurück zum Zitat Pearson, R.A., Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies. Part 2—Microscopy studies. J. Mater. Sci. 21, 2475–2488 (1986) Pearson, R.A., Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies. Part 2—Microscopy studies. J. Mater. Sci. 21, 2475–2488 (1986)
25.
Zurück zum Zitat Pearson, R.A., Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies 3. The effect of cross-link density. J. Mater. Sci. 24(7), 2571–2580 (1989)CrossRef Pearson, R.A., Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies 3. The effect of cross-link density. J. Mater. Sci. 24(7), 2571–2580 (1989)CrossRef
26.
Zurück zum Zitat Dean, J.M., et al.: Micellar structure and mechanical properties of block copolymer-modified epoxies. J. Polym. Sci. Polym. Phys. 39, 2996–3010 (2001)CrossRef Dean, J.M., et al.: Micellar structure and mechanical properties of block copolymer-modified epoxies. J. Polym. Sci. Polym. Phys. 39, 2996–3010 (2001)CrossRef
27.
Zurück zum Zitat Liu, J., et al.: Strain rate effect on toughening of nano-sized PEP-PEO block copolymer modified epoxy. Acta Mater. 57(9), 2691–2701 (2009)CrossRef Liu, J., et al.: Strain rate effect on toughening of nano-sized PEP-PEO block copolymer modified epoxy. Acta Mater. 57(9), 2691–2701 (2009)CrossRef
28.
Zurück zum Zitat Liu, J., et al.: Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41, 7616–7624 (2008)CrossRef Liu, J., et al.: Nanocavitation in self-assembled amphiphilic block copolymer-modified epoxy. Macromolecules 41, 7616–7624 (2008)CrossRef
29.
Zurück zum Zitat Thompson, Z.J., et al.: Block copolymer toughened epoxy—role of crosslink density. Macromolecules 42, 2333–2335 (2009)CrossRef Thompson, Z.J., et al.: Block copolymer toughened epoxy—role of crosslink density. Macromolecules 42, 2333–2335 (2009)CrossRef
30.
Zurück zum Zitat Sue, H.J., et al.: Fracture mechanisms in rigid core shell particle modified high performance epoxies. Colloid Polym. Sci. 274(4), 342–349 (1996)CrossRef Sue, H.J., et al.: Fracture mechanisms in rigid core shell particle modified high performance epoxies. Colloid Polym. Sci. 274(4), 342–349 (1996)CrossRef
31.
Zurück zum Zitat Bagheri, R., Pearson, R.A.: Role of blend morphology in rubber-toughened polymers. J. Mater. Sci. 31, 3945–3954 (1996)CrossRef Bagheri, R., Pearson, R.A.: Role of blend morphology in rubber-toughened polymers. J. Mater. Sci. 31, 3945–3954 (1996)CrossRef
32.
Zurück zum Zitat Lu, F., et al.: Toughening mechanisms in modified epoxy resins with different crosslink densities. Polym. Bull. 37(3), 399–406 (1996)CrossRef Lu, F., et al.: Toughening mechanisms in modified epoxy resins with different crosslink densities. Polym. Bull. 37(3), 399–406 (1996)CrossRef
33.
Zurück zum Zitat Huang, Y., Kinloch, A.J.: Modeling of the toughening mechanisms in rubber-modified epoxy polymers Part I. Finite element analysis studies. J. Mater. Sci. 27, 2753–2762 (1992) Huang, Y., Kinloch, A.J.: Modeling of the toughening mechanisms in rubber-modified epoxy polymers Part I. Finite element analysis studies. J. Mater. Sci. 27, 2753–2762 (1992)
34.
Zurück zum Zitat Huang, Y., Kinloch, A.J.: Modelling of the toughening mechanisms in rubber-modified epoxy polymers Part II—A quantitative description of the microstructure-fracture property relationships. J. Mater. Sci. 27, 2763–2769 (1992)CrossRef Huang, Y., Kinloch, A.J.: Modelling of the toughening mechanisms in rubber-modified epoxy polymers Part II—A quantitative description of the microstructure-fracture property relationships. J. Mater. Sci. 27, 2763–2769 (1992)CrossRef
35.
Zurück zum Zitat Arias, M.L., Frontini, P.M., Williams, R.J.J.: Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability. Polymer 44(5), 1537–1546 (2003)CrossRef Arias, M.L., Frontini, P.M., Williams, R.J.J.: Analysis of the damage zone around the crack tip for two rubber-modified epoxy matrices exhibiting different toughenability. Polymer 44(5), 1537–1546 (2003)CrossRef
36.
Zurück zum Zitat Aizpurua, B., et al.: Chemorheology and ultimate behavior of epoxy-amine mixtures modified with a liquid oligomer. J. Appl. Polym. Sci. 76(8), 1269–1279 (2000)CrossRef Aizpurua, B., et al.: Chemorheology and ultimate behavior of epoxy-amine mixtures modified with a liquid oligomer. J. Appl. Polym. Sci. 76(8), 1269–1279 (2000)CrossRef
37.
Zurück zum Zitat Bradley, W.L., et al.: The synergistic effect of cross-link density and rubber additions on the fracture toughness of polymers. Adv. Chem. Ser. 233, 317–334 (1993)CrossRef Bradley, W.L., et al.: The synergistic effect of cross-link density and rubber additions on the fracture toughness of polymers. Adv. Chem. Ser. 233, 317–334 (1993)CrossRef
38.
Zurück zum Zitat Raghavan, D., et al.: Strain rate dependence of fracture in a rubber-toughened epoxy system. J. Adhes. 78(8), 723–739 (2002)CrossRef Raghavan, D., et al.: Strain rate dependence of fracture in a rubber-toughened epoxy system. J. Adhes. 78(8), 723–739 (2002)CrossRef
39.
Zurück zum Zitat Cardwell, B.J., Yee, A.F.: Rate and temperature effects on the fracture toughness of a rubber-modified epoxy. Polymer 34(8), 1695–1701 (1993)CrossRef Cardwell, B.J., Yee, A.F.: Rate and temperature effects on the fracture toughness of a rubber-modified epoxy. Polymer 34(8), 1695–1701 (1993)CrossRef
40.
Zurück zum Zitat Bain, E.D., et al.: Failure processes governing high-rate impact resistance of epoxy resins filled with core–shell rubber nanoparticles. J. Mater. Sci. 51(5), 2347–2370 (2015)CrossRef Bain, E.D., et al.: Failure processes governing high-rate impact resistance of epoxy resins filled with core–shell rubber nanoparticles. J. Mater. Sci. 51(5), 2347–2370 (2015)CrossRef
41.
Zurück zum Zitat US Department of Defense: V50 ballistic test for armor MIL-STD-662F (1997) US Department of Defense: V50 ballistic test for armor MIL-STD-662F (1997)
42.
Zurück zum Zitat Bogoslovov, R.B., Roland, C.M., Gamache, R.M.: Impact-induced glass transition in elastomeric coatings. Appl. Phys. Lett. 90(22), 221910 (2007) Bogoslovov, R.B., Roland, C.M., Gamache, R.M.: Impact-induced glass transition in elastomeric coatings. Appl. Phys. Lett. 90(22), 221910 (2007)
43.
Zurück zum Zitat Roland, C.M.: Mechanical behavior of rubber at high strain rates. Rubber Chem. Technol. 79(3), 429–459 (2006)CrossRef Roland, C.M.: Mechanical behavior of rubber at high strain rates. Rubber Chem. Technol. 79(3), 429–459 (2006)CrossRef
44.
Zurück zum Zitat Roland, C.M., Fragiadakis, D., Gamache, R.M.: Elastomer-steel laminate armor. Compos. Struct. 92(5), 1059–1064 (2010)CrossRef Roland, C.M., Fragiadakis, D., Gamache, R.M.: Elastomer-steel laminate armor. Compos. Struct. 92(5), 1059–1064 (2010)CrossRef
45.
Zurück zum Zitat Roland, C.M., et al.: Factors influencing the ballistic impact resistance of elastomer-coated metal substrates. Philos. Mag. 93(5), 468–477 (2013)CrossRef Roland, C.M., et al.: Factors influencing the ballistic impact resistance of elastomer-coated metal substrates. Philos. Mag. 93(5), 468–477 (2013)CrossRef
46.
Zurück zum Zitat Compton, B.G., Gamble, E.A., Zok, F.W.: Failure initiation during impact of metal spheres onto ceramic targets. Int. J. Impact Eng. 55, 11–23 (2013)CrossRef Compton, B.G., Gamble, E.A., Zok, F.W.: Failure initiation during impact of metal spheres onto ceramic targets. Int. J. Impact Eng. 55, 11–23 (2013)CrossRef
47.
Zurück zum Zitat Seagraves, A.N., Radovitzky, R.A.: An analytical theory for radial crack propagation: application to spherical indentation. J. Appl. Mech. 80, 041018 (2013)CrossRef Seagraves, A.N., Radovitzky, R.A.: An analytical theory for radial crack propagation: application to spherical indentation. J. Appl. Mech. 80, 041018 (2013)CrossRef
48.
Zurück zum Zitat Lawn, B.R.: Indentation of ceramics with spheres: a century after Hertz. J. Am. Ceram. Soc. 81, 1977–1994 (1998)CrossRef Lawn, B.R.: Indentation of ceramics with spheres: a century after Hertz. J. Am. Ceram. Soc. 81, 1977–1994 (1998)CrossRef
49.
Zurück zum Zitat Sherman, D., Brandon, D.G.: The ballistic failure mechanisms and sequence in semi-infinite supported alumina tiles. J. Mater. Res. 12, 1335–1343 (1997)CrossRef Sherman, D., Brandon, D.G.: The ballistic failure mechanisms and sequence in semi-infinite supported alumina tiles. J. Mater. Res. 12, 1335–1343 (1997)CrossRef
50.
Zurück zum Zitat Sherman, D.: Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement. Int. J. Impact Eng. 24, 313–328 (2000)CrossRef Sherman, D.: Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement. Int. J. Impact Eng. 24, 313–328 (2000)CrossRef
51.
Zurück zum Zitat Qian, J.Y., et al.: The role of dispersed phase morphology on toughening of epoxies. Polymer 38(1), 21–30 (1997)CrossRef Qian, J.Y., et al.: The role of dispersed phase morphology on toughening of epoxies. Polymer 38(1), 21–30 (1997)CrossRef
52.
Zurück zum Zitat Iwamoto, T., Nagai, T., Sawa, T.: Experimental and computational investigations on strain rate sensitivity and deformation behavior of bulk materials made of epoxy resin structural adhesive. Int. J. Solids Struct. 47, 175–185 (2010)CrossRefMATH Iwamoto, T., Nagai, T., Sawa, T.: Experimental and computational investigations on strain rate sensitivity and deformation behavior of bulk materials made of epoxy resin structural adhesive. Int. J. Solids Struct. 47, 175–185 (2010)CrossRefMATH
Metadaten
Titel
Failure Processes Governing High Rate Impact Resistance of Epoxy Resins Filled with Core Shell Rubber Nanoparticles
verfasst von
Erich D. Bain
Daniel B. Knorr Jr.
Adam D. Richardson
Kevin A. Masser
Jian Yu
Joseph L. Lenhart
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-41132-3_36

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.