2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Data Science
Falls are one of the common reasons that affect the health of the elderly. Because of its high incidence and high occasionality, the assistance rate of the elderly is lower. Therefore, the fall detection method with an accurate and timely research and development can better help patients get effective assistance. We use a wirelessly-powered sensing platform to easily wear, which can convert RF signal as its own power without replacing any battery, as well as, it can work in non-line-of-sight environment and design a fall detection method based on wirelessly-powered sensing platform. Firstly, the wirelessly-powered sensing platform collects the acceleration data of the human waist and obtains the motion acceleration and its corresponding Euler angle information. Then, combining with Discrete Wavelet Transform and Hilbert-Huang Transform, a algorithm for decomposing acceleration signals is proposed to extract signal information. Finally, an abnormal detection algorithm for Euler angle is proposed, we use the Support Vector Machine algorithm with the abnormal detection algorithm for Euler angle to detect a behavior of the fall. At the same time, in order to alleviate the pressure of power consumption, a sampling factor is set to dynamically change the sampling frequency and reduce power consumption. Experiments show that this method has a higher accuracy, which is over 94.7% of accuracy of the lowest sampling frequency. In the meantime, it has important meaning for the assistance of patients with the fall.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Liu, P., Lu, T., Lu, Y., et al.: Fall detection based on MEMS triaxial accelerometer. J. Transduct. Technol. 4 (2014) Liu, P., Lu, T., Lu, Y., et al.: Fall detection based on MEMS triaxial accelerometer. J. Transduct. Technol.
4 (2014)
2.
Zurück zum Zitat Riveiro, M., Falkman, G.: Detecting anomalous behavior in sea traffic: a study of analytical strategies and their implications for surveillance systems. Int. J. Inf. Technol. Decis. Making 13(02), 317–360 (2014) CrossRef Riveiro, M., Falkman, G.: Detecting anomalous behavior in sea traffic: a study of analytical strategies and their implications for surveillance systems. Int. J. Inf. Technol. Decis. Making
13(02), 317–360 (2014)
CrossRef
3.
Zurück zum Zitat Xin, S., Qingyu, X., Yining. L.: Research on fall detection system based on pressure sensor. Chin. J. Sci. Instrum. 31(3) (2010) Xin, S., Qingyu, X., Yining. L.: Research on fall detection system based on pressure sensor. Chin. J. Sci. Instrum.
31(3) (2010)
4.
Zurück zum Zitat Rimminen, H., Lindström, J., Linnavuo, M., et al.: Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans. Inf. Technol. Biomed. 14(6), 1475–1476 (2010). Publication of the IEEE Engineering in Medicine and Biology Society CrossRef Rimminen, H., Lindström, J., Linnavuo, M., et al.: Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans. Inf. Technol. Biomed.
14(6), 1475–1476 (2010). Publication of the IEEE Engineering in Medicine and Biology Society
CrossRef
5.
Zurück zum Zitat Elhamod, M., Levine, M.D.: Automated real-time detection of potentially suspicious behavior in public transport areas. IEEE Trans. Intell. Transp. Syst. 14(2), 688–699 (2013) CrossRef Elhamod, M., Levine, M.D.: Automated real-time detection of potentially suspicious behavior in public transport areas. IEEE Trans. Intell. Transp. Syst.
14(2), 688–699 (2013)
CrossRef
6.
Zurück zum Zitat Yan, Y., Li, H., Zhao, J., Li, D., Liu, J.: Fall detection system using CRFID and pattern recognition. Comput. Eng. 1–7 (2019) Yan, Y., Li, H., Zhao, J., Li, D., Liu, J.: Fall detection system using CRFID and pattern recognition. Comput. Eng. 1–7 (2019)
7.
Zurück zum Zitat Han, C., Wu, K., Wang, Y., Ni, L.M.: WiFall: device-free fall detection by wireless networks. In: Proceedings IEEE, INFOCOM (2014) Han, C., Wu, K., Wang, Y., Ni, L.M.: WiFall: device-free fall detection by wireless networks. In: Proceedings IEEE, INFOCOM (2014)
8.
Zurück zum Zitat Wang, R.: Research on real-time sensing task scheduling method in WISP system (2018) Wang, R.: Research on real-time sensing task scheduling method in WISP system (2018)
9.
Zurück zum Zitat Ma, Q., Wang, Z., Zheng, X.: Research on fall detection system for the elderly based on android. Digit. Technol. Appl. 2, 105–106 (2017) Ma, Q., Wang, Z., Zheng, X.: Research on fall detection system for the elderly based on android. Digit. Technol. Appl.
2, 105–106 (2017)
10.
Zurück zum Zitat De Cillis, F., De Simio, F., Guidoy, F., et al.: Fall-detection solution for mobile platforms using accelerometer and gyroscope data. In: Proceedings of the International Conference on Engineering in Medicine and Biology Society, Milan, pp. 3727–3730. IEEE (2015) De Cillis, F., De Simio, F., Guidoy, F., et al.: Fall-detection solution for mobile platforms using accelerometer and gyroscope data. In: Proceedings of the International Conference on Engineering in Medicine and Biology Society, Milan, pp. 3727–3730. IEEE (2015)
11.
Zurück zum Zitat Hauenstein, J., Tinaztepe, R., Aygun, R.S.: ‘You can run, but you cannot hide’: tracking objects that leave the field-of-view. Int. J. Inf. Technol. Decis. Making 11(01), 11–31 (2012) CrossRef Hauenstein, J., Tinaztepe, R., Aygun, R.S.: ‘You can run, but you cannot hide’: tracking objects that leave the field-of-view. Int. J. Inf. Technol. Decis. Making
11(01), 11–31 (2012)
CrossRef
12.
Zurück zum Zitat Chua, J.L., Chang, Y.C., Lim, W.K.: Intelligent visual based fall detection technique for home surveillance (2012) Chua, J.L., Chang, Y.C., Lim, W.K.: Intelligent visual based fall detection technique for home surveillance (2012)
13.
Zurück zum Zitat Selvabala, V.S.N., Ganesh, A.B.: Implementation of wireless sensor network based human fall detection system. Procedia Eng. 30, 767–773 (2012) CrossRef Selvabala, V.S.N., Ganesh, A.B.: Implementation of wireless sensor network based human fall detection system. Procedia Eng.
30, 767–773 (2012)
CrossRef
14.
Zurück zum Zitat Lee, J.K., Robinovitch, S.N., Park, E.J.: Inertial sensing-based pre-impact detection of falls involving near-fall scenarios. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 258–266 (2015) CrossRef Lee, J.K., Robinovitch, S.N., Park, E.J.: Inertial sensing-based pre-impact detection of falls involving near-fall scenarios. IEEE Trans. Neural Syst. Rehabil. Eng.
23(2), 258–266 (2015)
CrossRef
15.
Zurück zum Zitat Shahzad, M., Lu, S., Wang, W., et al.: Understanding and modeling of WiFi signal based human activity recognition. In: International Conference on Mobile Computing & Networking. ACM (2015) Shahzad, M., Lu, S., Wang, W., et al.: Understanding and modeling of WiFi signal based human activity recognition. In: International Conference on Mobile Computing & Networking. ACM (2015)
16.
Zurück zum Zitat Palipana, S., Rojas, D., Agrawal, P., Pesch, D.: FallDeFi: ubiquitous fall detection using commodity Wi-Fi devices. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (2018). https://doi.org/10.1145/3161183 Palipana, S., Rojas, D., Agrawal, P., Pesch, D.: FallDeFi: ubiquitous fall detection using commodity Wi-Fi devices. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (2018).
https://doi.org/10.1145/3161183
17.
Zurück zum Zitat Zhu, X., Li, Y., Huang, Y., Huang, Q.: Deinterlacing algorithm based on scene shear and content feature detection. Comput. Sci. 46(03), 154–158 (2019) Zhu, X., Li, Y., Huang, Y., Huang, Q.: Deinterlacing algorithm based on scene shear and content feature detection. Comput. Sci.
46(03), 154–158 (2019)
18.
Zurück zum Zitat Li, H., Yang, W., Wang, J., et al.: WiFinger: talk to your smart devices with finger-grained gesture. In: ACM International Joint Conference on Pervasive & Ubiquitous Computing. ACM (2016) Li, H., Yang, W., Wang, J., et al.: WiFinger: talk to your smart devices with finger-grained gesture. In: ACM International Joint Conference on Pervasive & Ubiquitous Computing. ACM (2016)
19.
Zurück zum Zitat Zou, Q., Fu, C., Mo, S.: Imaging, inertia and height integrated navigation of quadrilateral aircraft based on Kalman filter. J. Transduct. Technol. 32(01), 1–7 (2019) Zou, Q., Fu, C., Mo, S.: Imaging, inertia and height integrated navigation of quadrilateral aircraft based on Kalman filter. J. Transduct. Technol.
32(01), 1–7 (2019)
20.
Zurück zum Zitat Wang, G., Zou, Y., Zhou, Z., et al.: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking – MobiCom 2014 - We can hear you with Wi-Fi!, pp. 593–604 (2014). [ACM Press the 20th Annual International Conference, Maui, Hawaii, USA (07.09.2014–11.09.2014)] Wang, G., Zou, Y., Zhou, Z., et al.: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking – MobiCom 2014 - We can hear you with Wi-Fi!, pp. 593–604 (2014). [ACM Press the 20th Annual International Conference, Maui, Hawaii, USA (07.09.2014–11.09.2014)]
21.
Zurück zum Zitat Zhao, X., Shi, Y., Lee, J., et al.: Customer churn prediction based on feature clustering and nonparallel support vector machine. Int. J. Inf. Technol. Decis. Making 13(05), 1013–1027 (2014) CrossRef Zhao, X., Shi, Y., Lee, J., et al.: Customer churn prediction based on feature clustering and nonparallel support vector machine. Int. J. Inf. Technol. Decis. Making
13(05), 1013–1027 (2014)
CrossRef
- Titel
- Fall Detection Method Based on Wirelessly-Powered Sensing Platform
- DOI
- https://doi.org/10.1007/978-981-15-2810-1_29
- Autoren:
-
Tao Zhang
Zhijun Xie
- Verlag
- Springer Singapore
- Sequenznummer
- 29