Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Electronic Testing 2/2022

13.05.2022

FAMCroNA: Fault Analysis in Memristive Crossbars for Neuromorphic Applications

verfasst von: Dev Narayan Yadav, Phrangboklang Lyngton Thangkhiew, Kamalika Datta, Sandip Chakraborty, Rolf Drechsler, Indranil Sengupta

Erschienen in: Journal of Electronic Testing | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Resistive memories have drawn the attention of researchers due to their low power and single-cycle computation of vector-matrix multiplication (VMM), which is the main operation performed in neural networks. For performing VMM, one of the most desirable architectures is the memristor crossbar that has several advantages over other memory technologies, viz. in-memory computation, low power, and high density. However, faults present in the crossbar can introduce errors in the inference process during neuromorphic computations. Existing methods to handle faults using retraining and remapping incur overheads in terms of hardware, power, and delay. In this paper we explore and analyze the impact of faults on memristor-based crossbar for overall inference accuracy. We have observed that the accuracy is not significantly affected in the presence of a limited number of faults. Also, the inference quality and effect of faults depend on the number of neural network layers and storage resolution of memristors present in the crossbar. The introduced approach works in three phases, fault tolerance analysis, high-level fault detection, and low-level fault detection. In the first phase, we analyze the fault tolerance capability of the crossbar, which identifies how many faults can be tolerated for a given application. In the second phase, we estimate the percentage of faults, and if it is below a threshold the third phase can be skipped. In the third phase, an efficient method to determine the exact location of the faults is used. The proposed method is capable of performing parallel operations, thus requiring fewer read/write steps as compared to existing works. The proposed approach requires O(N) read/write operations as compared to \(O(N^2)\) operations required in existing works.
Literatur
2.
Zurück zum Zitat Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL, etal. (2013) A public domain dataset for human activity recognition using smartphones. In: Proc. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning ESANN 3 Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL, etal. (2013) A public domain dataset for human activity recognition using smartphones. In: Proc. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning ESANN 3
3.
Zurück zum Zitat Ankit A, Hajj IE, Chalamalasetti SR, Ndu G, Foltin M, Williams RS, Faraboschi P, Hwu WmW, Strachan JP, Roy K, Milojicic DS (2019) PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference. In: Proc. 24th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems 715-731. https://​doi.​org/​10.​1145/​3297858.​3304049 Ankit A, Hajj IE, Chalamalasetti SR, Ndu G, Foltin M, Williams RS, Faraboschi P, Hwu WmW, Strachan JP, Roy K, Milojicic DS (2019) PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference. In: Proc. 24th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems 715-731. https://​doi.​org/​10.​1145/​3297858.​3304049
4.
Zurück zum Zitat Bushnell ML, Agrawal VD (2004) Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits. vol 17, Springer Science and Business Media, chap 4 Bushnell ML, Agrawal VD (2004) Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits. vol 17, Springer Science and Business Media, chap 4
10.
27.
Zurück zum Zitat Shafiee A, Nag A, Muralimanohar N, Balasubramonian R, Strachan JP, Hu M, Williams RS, Srikumar V (2016) Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In: Proc. ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA) 14–26. https://​doi.​org/​10.​1109/​ISCA.​2016.​12 Shafiee A, Nag A, Muralimanohar N, Balasubramonian R, Strachan JP, Hu M, Williams RS, Srikumar V (2016) Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In: Proc. ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA) 14–26. https://​doi.​org/​10.​1109/​ISCA.​2016.​12
Metadaten
Titel
FAMCroNA: Fault Analysis in Memristive Crossbars for Neuromorphic Applications
verfasst von
Dev Narayan Yadav
Phrangboklang Lyngton Thangkhiew
Kamalika Datta
Sandip Chakraborty
Rolf Drechsler
Indranil Sengupta
Publikationsdatum
13.05.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Testing / Ausgabe 2/2022
Print ISSN: 0923-8174
Elektronische ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-022-06001-2

Weitere Artikel der Ausgabe 2/2022

Journal of Electronic Testing 2/2022 Zur Ausgabe

EditorialNotes

Editorial