Skip to main content
Erschienen in:

20.07.2024

Farm-Level Smart Crop Recommendation Framework Using Machine Learning

verfasst von: Amit Bhola, Prabhat Kumar

Erschienen in: Annals of Data Science | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Agriculture is the primary source of food, fuel, and raw materials and is vital to any country’s economy. Farmers, the backbone of agriculture, primarily rely on instinct to determine what crops to plant in any given season. They are comfortable following customary farming practices and standards and are oblivious to the fact that crop yield is highly dependent on current environmental and soil conditions. Crop recommendations involve multifaceted factors such as weather, soil quality, crop production, market demand, and prices, making it crucial for farmers to make well-informed decisions. An improper or imprudent crop recommendation can affect them, their families, and the entire agricultural sector. Modern technologies like artificial intelligence, machine learning, and data science have emerged as efficient solutions to combat issues like declining crop production and lower profits. This research proposes a Smart Crop Recommendation framework that leverages machine learning to empower farmers to make informed decisions about optimal crop selection. The framework consists of two phases: crop filtration and yield prediction. Crops are filtered in the first phase using an artificial neural network based on local input parameters. The second phase estimates yield for filtered crops, considering the season, farm area, and location data. The final recommendation provides farmers with crops aimed at maximizing profit. The remarkable 99.10% accuracy of the framework is demonstrated through experimentation using artificial neural networks and the 0.99 \(\text {R}^{\text {2}}\) error metric for the random forest. The uniqueness of this framework lies in its distinctive focus on the farm level and its consideration of the challenges and various agricultural features that change over time. The experimental results affirm the effectiveness of the framework, and its lightweight nature enhances its practicality, making it an efficient real-time recommendation solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10 Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10
19.
Zurück zum Zitat Mariammal G, Suruliandi A, Raja S, Poongothai E (2021) Prediction of land suitability for crop cultivation based on soil and environmental characteristics using modified recursive feature elimination technique with various classifiers. IEEE Trans Comput Soc Syst 8(5):1132–1142. https://doi.org/10.1109/TCSS.2021.3074534CrossRef Mariammal G, Suruliandi A, Raja S, Poongothai E (2021) Prediction of land suitability for crop cultivation based on soil and environmental characteristics using modified recursive feature elimination technique with various classifiers. IEEE Trans Comput Soc Syst 8(5):1132–1142. https://​doi.​org/​10.​1109/​TCSS.​2021.​3074534CrossRef
28.
Zurück zum Zitat Shingade SD, Mudhalwadkar RP (2023) Sensor information-based crop recommendation system using machine learning for the fertile regions of Maharashtra. Concurr Comput Pract Exp 35:7774CrossRef Shingade SD, Mudhalwadkar RP (2023) Sensor information-based crop recommendation system using machine learning for the fertile regions of Maharashtra. Concurr Comput Pract Exp 35:7774CrossRef
37.
Zurück zum Zitat Ajoodha R, Mufamadi TO (2023) Crop recommendation using machine learning algorithms and soil attributes data. In: Proceedings of 3rd international conference on artificial intelligence: advances and applications: ICAIAA 2022, pp 31–41 Ajoodha R, Mufamadi TO (2023) Crop recommendation using machine learning algorithms and soil attributes data. In: Proceedings of 3rd international conference on artificial intelligence: advances and applications: ICAIAA 2022, pp 31–41
Metadaten
Titel
Farm-Level Smart Crop Recommendation Framework Using Machine Learning
verfasst von
Amit Bhola
Prabhat Kumar
Publikationsdatum
20.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 1/2025
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00534-3