Skip to main content
Erschienen in: The Journal of Supercomputing 2/2013

01.08.2013

Fast 3D wavelet transform on multicore and many-core computing platforms

verfasst von: V. Galiano, O. López-Granado, M. P. Malumbres, H. Migallón

Erschienen in: The Journal of Supercomputing | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The three-dimensional wavelet transform (3D-DWT) has focused the attention of the research community, most of all in areas such as video watermarking, compression of volumetric medical data, multispectral image coding, 3D model coding and video coding. In this work, we present several strategies to speed up the 3D-DWT computation through multicore processing. An in depth analysis of the available compiler optimizations is also presented. Depending on both the multicore platform and the GOP size, the developed parallel algorithm obtains efficiencies above 95 % using up to four cores (or processes), and above 83 % using up to 12 cores. Furthermore, the extra memory requirements is under 0.12 % for low resolution video frames, and under 0.017 % for high resolution video frames. In this work, we also present a CUDA-based algorithm to compute the 3D-DWT using the shared memory for the extra memory demands, obtaining speed-ups up to 12.68 on the many-core GTX280 platform. In areas such as video processing or ultra high definition image processing, the memory requirements can significantly degrade the developed algorithms, however, our algorithm increases the memory requirements in a negligible percentage, being able to perform a nearly in-place computation of the 3D-DWT whereas in other state-of-the-art 3D-DWT algorithms it is quite common to use a different memory space to store the computed wavelet coefficients doubling in this manner the memory requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Campisi P, Neri A (2005) Video watermarking in the 3D-DWT domain using perceptual masking. In: IEEE international conference on image processing, September 2005, pp 997–1000 Campisi P, Neri A (2005) Video watermarking in the 3D-DWT domain using perceptual masking. In: IEEE international conference on image processing, September 2005, pp 997–1000
2.
Zurück zum Zitat Schelkens P, Munteanu A, Barbariend J, Galca M, Giro-Nieto X, Cornelis J (2003) Wavelet coding of volumetric medical datasets. IEEE Trans Med Imaging 22(3):441–458 CrossRef Schelkens P, Munteanu A, Barbariend J, Galca M, Giro-Nieto X, Cornelis J (2003) Wavelet coding of volumetric medical datasets. IEEE Trans Med Imaging 22(3):441–458 CrossRef
3.
Zurück zum Zitat Dragotti PL, Poggi G (2000) Compression of multispectral images by three-dimensional SPITH algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428 CrossRef Dragotti PL, Poggi G (2000) Compression of multispectral images by three-dimensional SPITH algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428 CrossRef
4.
Zurück zum Zitat Aviles M, Moran F, Garcia N (2005) Progressive lower trees of wavelet coefficients: efficient spatial and SNR scalable coding of 3D models. Lect Notes Comput Sci 3767:61–72 CrossRef Aviles M, Moran F, Garcia N (2005) Progressive lower trees of wavelet coefficients: efficient spatial and SNR scalable coding of 3D models. Lect Notes Comput Sci 3767:61–72 CrossRef
5.
Zurück zum Zitat Podilchuk CI, Jayant NS, Farvardin N (1995) Three dimensional subband coding of video. IEEE Trans Image Process 4(2):125–135 CrossRef Podilchuk CI, Jayant NS, Farvardin N (1995) Three dimensional subband coding of video. IEEE Trans Image Process 4(2):125–135 CrossRef
6.
Zurück zum Zitat Taubman D, Zakhor A (1994) Multirate 3-D subband coding of video. IEEE Trans Image Process 3(5):572–588 CrossRef Taubman D, Zakhor A (1994) Multirate 3-D subband coding of video. IEEE Trans Image Process 3(5):572–588 CrossRef
7.
Zurück zum Zitat Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):1–2 CrossRef Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):1–2 CrossRef
8.
Zurück zum Zitat Said A, Pearlman A (1996) A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250 CrossRef Said A, Pearlman A (1996) A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250 CrossRef
9.
Zurück zum Zitat Oliver J, Malumbres MP (2006) Low-complexity multiresolution image compression using wavelet lower trees. IEEE Trans Circuits Syst Video Technol 16(11):1437–1444 CrossRef Oliver J, Malumbres MP (2006) Low-complexity multiresolution image compression using wavelet lower trees. IEEE Trans Circuits Syst Video Technol 16(11):1437–1444 CrossRef
10.
Zurück zum Zitat Chen Y, Pearlman WA (1996) Three-dimensional subband coding of video using the zero-tree method. In: Visual communications and image processing. Proc SPIE, vol 2727, pp 1302–1309 CrossRef Chen Y, Pearlman WA (1996) Three-dimensional subband coding of video using the zero-tree method. In: Visual communications and image processing. Proc SPIE, vol 2727, pp 1302–1309 CrossRef
11.
Zurück zum Zitat Luo J, Wang X, Chen CW, Parker KJ (1996) Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding. In: Visual communications and image processing. Proc SPIE, vol 2727, pp 579–590 CrossRef Luo J, Wang X, Chen CW, Parker KJ (1996) Volumetric medical image compression with three-dimensional wavelet transform and octave zerotree coding. In: Visual communications and image processing. Proc SPIE, vol 2727, pp 579–590 CrossRef
12.
Zurück zum Zitat Kim BJ, Xiong Z, Pearlman WA (2000) Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT). IEEE Trans Circuits Syst Video Technol 10:1374–1387 CrossRef Kim BJ, Xiong Z, Pearlman WA (2000) Low bit-rate scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT). IEEE Trans Circuits Syst Video Technol 10:1374–1387 CrossRef
13.
Zurück zum Zitat Lopez O, Martinez-Rach M, Piñol P, Malumbres MP, Oliver J (2010) Low bit-rate video coding with 3D lower trees (3D-LTW). Lect Notes Comput Sci 6077:256–263 CrossRef Lopez O, Martinez-Rach M, Piñol P, Malumbres MP, Oliver J (2010) Low bit-rate video coding with 3D lower trees (3D-LTW). Lect Notes Comput Sci 6077:256–263 CrossRef
14.
Zurück zum Zitat Wong T-T, Leung C-S, Heng P-A, Wang J (2007) Discrete wavelet transform on consumer-level graphics hardware. IEEE Trans Multimed 9(3):668–673 CrossRef Wong T-T, Leung C-S, Heng P-A, Wang J (2007) Discrete wavelet transform on consumer-level graphics hardware. IEEE Trans Multimed 9(3):668–673 CrossRef
15.
Zurück zum Zitat Tenllado C, Setoain J, Prieto M, Pinuel L, Tirado F (2008) Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans Parallel Distrib Syst 19(3):299–310 CrossRef Tenllado C, Setoain J, Prieto M, Pinuel L, Tirado F (2008) Parallel implementation of the 2D discrete wavelet transform on graphics processing units: filter bank versus lifting. IEEE Trans Parallel Distrib Syst 19(3):299–310 CrossRef
16.
Zurück zum Zitat Franco J, Bernabé G, Fernández J, Acacio ME, Ujaldón M (2010) The GPU on the 2D wavelet transform. survey and contributions. In: Proceedings of para 2010: state of the art in scientific and parallel computing Franco J, Bernabé G, Fernández J, Acacio ME, Ujaldón M (2010) The GPU on the 2D wavelet transform. survey and contributions. In: Proceedings of para 2010: state of the art in scientific and parallel computing
17.
Zurück zum Zitat Galiano V, López O, Malumbres MP, Migallón H (2011) Improving the discrete wavelet transform computation from multicore to gpu-based algorithms. In: Proceedings of international conference on computational and mathematical methods in science and engineering Galiano V, López O, Malumbres MP, Migallón H (2011) Improving the discrete wavelet transform computation from multicore to gpu-based algorithms. In: Proceedings of international conference on computational and mathematical methods in science and engineering
18.
Zurück zum Zitat Franco J, Bernabé G, Fernández J, Ujaldón M (2010) Parallel 3D fast wavelet transform on manycore gpus and multicore cpus. Proc Comput Sci 1(1):1101–1110 CrossRef Franco J, Bernabé G, Fernández J, Ujaldón M (2010) Parallel 3D fast wavelet transform on manycore gpus and multicore cpus. Proc Comput Sci 1(1):1101–1110 CrossRef
19.
Zurück zum Zitat Mallat SG (1989) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693 MATHCrossRef Mallat SG (1989) A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693 MATHCrossRef
23.
Zurück zum Zitat Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with cuda. In: Queue, vol 6, pp 40–53 Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel programming with cuda. In: Queue, vol 6, pp 40–53
24.
Zurück zum Zitat NVIDIA Corporation. Nvidia CUDA C programming guide. version 3.2 NVIDIA Corporation. Nvidia CUDA C programming guide. version 3.2
Metadaten
Titel
Fast 3D wavelet transform on multicore and many-core computing platforms
verfasst von
V. Galiano
O. López-Granado
M. P. Malumbres
H. Migallón
Publikationsdatum
01.08.2013
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 2/2013
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-013-0868-0

Weitere Artikel der Ausgabe 2/2013

The Journal of Supercomputing 2/2013 Zur Ausgabe