Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Pattern Recognition and Image Analysis 4/2022

01.12.2022 | APPLIED PROBLEMS

Fast and Accurate Deep Learning Model for Stamps Detection for Embedded Devices

verfasst von: A. Gayer, D. Ershova, V. Arlazarov

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

The search for stamps on images is necessary to verify the authenticity of a document and extract valuable textual information contained in them. Despite the vast number of methods for detecting stamps, most of them are not universal and are limited either by the characteristics of the stamp or by the computational complexity of the approach. The last criterion is extremely relevant, since document recognition is actively transferred from server solutions to mobile devices with low computing power and limited battery life. In view of this, in this paper we propose a compact and computationally efficient neural network model for searching for stamps of any shape and color. Based on the popular neural network detector YOLO, our model contains only 128 thousand parameters. We demonstrate the effectiveness of the model in an experiment on the public dataset SPODS (scanned pseudo-official dataset), containing high-resolution scans of documents with stamps.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
7.
Zurück zum Zitat S. Chanda, P.K. Prasad, A. Hast, A. Brun, L. Martensson, and U. Pal, “Finding logo and seal in historical document images—An object detection based approach, in Pattern Recognition. ACPR 2019, Ed. by S. Palaiahnakote, G. Sanniti di Baja, L. Wang, and W. Yan, Lecture Notes in Computer Science, Vol. 12046 (Springer, Cham, 2019), pp. 821–834.  https://​doi.​org/​10.​1007/​978-3-030-41404-7_​58 CrossRef S. Chanda, P.K. Prasad, A. Hast, A. Brun, L. Martensson, and U. Pal, “Finding logo and seal in historical document images—An object detection based approach, in Pattern Recognition. ACPR 2019, Ed. by S. Palaiahnakote, G. Sanniti di Baja, L. Wang, and W. Yan, Lecture Notes in Computer Science, Vol. 12046 (Springer, Cham, 2019), pp. 821–834.  https://​doi.​org/​10.​1007/​978-3-030-41404-7_​58 CrossRef
8.
Zurück zum Zitat S. Dey, J. Mukherjee, S. Sural, and P. Bhowmick. “Colored rubber stamp removal from document images,” in Pattern Recognition and Machine Intelligence. PReMI 2013, Ed. by P. Maji, A. Ghosh, M. N. Murty, K. Ghosh, and S. K. Pal, Lecture Notes in Computer Science, Vol. 8251 (Springer, Berlin, 2013), pp. 545–550. https://​doi.​org/​10.​1007/​978-3-642-45062-4_​75 CrossRef S. Dey, J. Mukherjee, S. Sural, and P. Bhowmick. “Colored rubber stamp removal from document images,” in Pattern Recognition and Machine Intelligence. PReMI 2013, Ed. by P. Maji, A. Ghosh, M. N. Murty, K. Ghosh, and S. K. Pal, Lecture Notes in Computer Science, Vol. 8251 (Springer, Berlin, 2013), pp. 545–550. https://​doi.​org/​10.​1007/​978-3-642-45062-4_​75 CrossRef
11.
Zurück zum Zitat P. Forczmański, D. Frejlichowski (2010). “Robust stamps detection and classification by means of general shape analysis,” in Computer Vision and Graphics. ICCVG 2010, Ed. by L. Bolc, R. Tadeusiewicz, L.J. Chmielewski, and K. Wojciechowski, Lecture Notes in Computer Science, Vol. 6374 (Springer, Berlin, 2010), pp. 360–367. https://​doi.​org/​10.​1007/​978-3-642-15910-7_​41 CrossRef P. Forczmański, D. Frejlichowski (2010). “Robust stamps detection and classification by means of general shape analysis,” in Computer Vision and Graphics. ICCVG 2010, Ed. by L. Bolc, R. Tadeusiewicz, L.J. Chmielewski, and K. Wojciechowski, Lecture Notes in Computer Science, Vol. 6374 (Springer, Berlin, 2010), pp. 360–367. https://​doi.​org/​10.​1007/​978-3-642-15910-7_​41 CrossRef
13.
Zurück zum Zitat R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 2013 (IEEE, 2010), pp. 580–587. https://​doi.​org/​10.​1109/​CVPR.​2014.​8 R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation, in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 2013 (IEEE, 2010), pp. 580–587. https://​doi.​org/​10.​1109/​CVPR.​2014.​8
20.
Zurück zum Zitat A. V. Nandedkar, J. Mukherjee, and S. Sural, “SPODS: A Dataset of color-official documents and detection of logo, stamp, and signature,” in Computer Vision, Graphics, and Image Processing. ICVGIP 2016, Ed. by S. Mukherjee, S. Mukherjee, D. P. Mukherjee, J. Sivaswamy, S. Awate, S. Setlur, A. M. Namboodiri, and S. Chaudhury, Lecture Notes in Computer Science, Vol. 10481 (Springer, Cham, 2017), pp. 219–230. https://​doi.​org/​10.​1007/​978-3-319-68124-5_​19 CrossRef A. V. Nandedkar, J. Mukherjee, and S. Sural, “SPODS: A Dataset of color-official documents and detection of logo, stamp, and signature,” in Computer Vision, Graphics, and Image Processing. ICVGIP 2016, Ed. by S. Mukherjee, S. Mukherjee, D. P. Mukherjee, J. Sivaswamy, S. Awate, S. Setlur, A. M. Namboodiri, and S. Chaudhury, Lecture Notes in Computer Science, Vol. 10481 (Springer, Cham, 2017), pp. 219–230. https://​doi.​org/​10.​1007/​978-3-319-68124-5_​19 CrossRef
23.
Zurück zum Zitat J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” (2018). arXiv:1804.02767 [cs.CV] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” (2018). arXiv:1804.02767 [cs.CV]
27.
Zurück zum Zitat S. Volkova, “Analysis of the training parameters of cascade classifier to find elements of a face,” Inf. Tekhnol. Vychislit. Sist. 4, 78–85 (2015). S. Volkova, “Analysis of the training parameters of cascade classifier to find elements of a face,” Inf. Tekhnol. Vychislit. Sist. 4, 78–85 (2015).
29.
Zurück zum Zitat J. Younas, M. Z. Afzal, M. I. Malik, F. Shafait, P. Lukowicz, and S. Ahmed, “D-StaR: A generic method for stamp segmentation from document images,” in 14th IAPR Int. Conf. on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 2017 (IEEE, 2017), pp. 248–253. https://​doi.​org/​10.​1109/​ICDAR.​2017.​49 J. Younas, M. Z. Afzal, M. I. Malik, F. Shafait, P. Lukowicz, and S. Ahmed, “D-StaR: A generic method for stamp segmentation from document images,” in 14th IAPR Int. Conf. on Document Analysis and Recognition (ICDAR), Kyoto, Japan, 2017 (IEEE, 2017), pp. 248–253. https://​doi.​org/​10.​1109/​ICDAR.​2017.​49
Metadaten
Titel
Fast and Accurate Deep Learning Model for Stamps Detection for Embedded Devices
verfasst von
A. Gayer
D. Ershova
V. Arlazarov
Publikationsdatum
01.12.2022
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2022
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661822040046

Weitere Artikel der Ausgabe 4/2022

Pattern Recognition and Image Analysis 4/2022 Zur Ausgabe

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Reduction of Video Data at Translation of a Registered Object Relative to Video Sensors Based on the Eigenbasis of Interpretation Model

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Subjective Restoration of Omissions in the Measurement Data of an Object of Study and Its Mathematical Model

Premium Partner