Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.08.2014 | Original Paper | Ausgabe 6/2014

Machine Vision and Applications 6/2014

Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method

Zeitschrift:
Machine Vision and Applications > Ausgabe 6/2014
Autoren:
Siavash Alipour, Jamshid Shanbehzadeh

Abstract

Fast two-cycle (FTC) model is an efficient and the fastest Level set image segmentation. But, its performance is highly dependent on appropriate manual initialization. This paper proposes a new algorithm by combining a spatially constrained kernel-based fuzzy c-means (SKFCM) algorithm and an FTC model to overcome the mentioned problem. The approach consists of two successive stages. First, the SKFCM makes a rough segmentation to select the initial contour automatically. Then, a fuzzy membership matrix of the region of interest, which is generated by the SKFCM, is used in the next stage to produce an initial contour. Eventually, the FTC scheme segments the image by a curve evolution based on the level set. Moreover, the fuzzy membership degree from the SKFCM is incorporated into the fidelity term of the Chan–Vese model to improve the robustness and accuracy, and it is utilized for the data-dependent speed term of the FTC. A performance evaluation of the proposed algorithm is carried out on the synthetic and real images. The experimental results show that the proposed algorithm has advantages in accuracy, computational time and robustness against noise in comparison with the KFCM, the SKFCM, the hybrid model of the KFCM and the FTC, and five different level set methods on medical image segmentation.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2014

Machine Vision and Applications 6/2014Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise