Skip to main content
Erschienen in: Neuroinformatics 1/2017

08.10.2016 | Original Article

Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas

verfasst von: Nicole Labra, Pamela Guevara, Delphine Duclap, Josselin Houenou, Cyril Poupon, Jean-François Mangin, Miguel Figueroa

Erschienen in: Neuroinformatics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an algorithm for fast segmentation of white matter bundles from massive dMRI tractography datasets using a multisubject atlas. We use a distance metric to compare streamlines in a subject dataset to labeled centroids in the atlas, and label them using a per-bundle configurable threshold. In order to reduce segmentation time, the algorithm first preprocesses the data using a simplified distance metric to rapidly discard candidate streamlines in multiple stages, while guaranteeing that no false negatives are produced. The smaller set of remaining streamlines is then segmented using the original metric, thus eliminating any false positives from the preprocessing stage. As a result, a single-thread implementation of the algorithm can segment a dataset of almost 9 million streamlines in less than 6 minutes. Moreover, parallel versions of our algorithm for multicore processors and graphics processing units further reduce the segmentation time to less than 22 seconds and to 5 seconds, respectively. This performance enables the use of the algorithm in truly interactive applications for visualization, analysis, and segmentation of large white matter tractography datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in Biomedicine, 15, 435–455.CrossRefPubMed Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in Biomedicine, 15, 435–455.CrossRefPubMed
Zurück zum Zitat Bénézit, A., Hertz-Pannier, L., Dehaene-Lambertz, G., Monzalvo, K., Germanaud, D., Duclap, D., Guevara, P., Mangin, J.F., Poupon, C., Moutard, M.L., & Dubois, J. (2015). Organising white matter in a brain without corpus callosum fibres. Cortex, 63, 155–171.CrossRefPubMed Bénézit, A., Hertz-Pannier, L., Dehaene-Lambertz, G., Monzalvo, K., Germanaud, D., Duclap, D., Guevara, P., Mangin, J.F., Poupon, C., Moutard, M.L., & Dubois, J. (2015). Organising white matter in a brain without corpus callosum fibres. Cortex, 63, 155–171.CrossRefPubMed
Zurück zum Zitat Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 77–94.CrossRefPubMed Catani, M., Howard, R.J., Pajevic, S., & Jones, D.K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17(1), 77–94.CrossRefPubMed
Zurück zum Zitat Catani, M., Jones, D.K., & ffytche, D.H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.CrossRefPubMed Catani, M., Jones, D.K., & ffytche, D.H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.CrossRefPubMed
Zurück zum Zitat Descoteaux, M., Angelino, E., Fitzgibbons, S., & Deriche, R. (2007). Regularized, fast and robust analytical q-ball imaging. Magnetic Resonance in Medicine, 58, 497–510.CrossRefPubMed Descoteaux, M., Angelino, E., Fitzgibbons, S., & Deriche, R. (2007). Regularized, fast and robust analytical q-ball imaging. Magnetic Resonance in Medicine, 58, 497–510.CrossRefPubMed
Zurück zum Zitat Descoteaux, M., Deriche, R., Knösche, T.R., & Anwander, A. (2009). Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Transactions in Medical Imaging, 28(2), 269–286.CrossRef Descoteaux, M., Deriche, R., Knösche, T.R., & Anwander, A. (2009). Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Transactions in Medical Imaging, 28(2), 269–286.CrossRef
Zurück zum Zitat Dubois, J., Kulikova, S., Hertz-Pannier, L., Mangin, J.F., Dehaene-Lambertz, G., & Poupon, C. (2014). Correction strategy for diffusion-weighted images corrupted with motion: application to the dti evaluation of infants’ white matter. Magnetic Resonance Imaging, 32(8), 981–992.CrossRefPubMed Dubois, J., Kulikova, S., Hertz-Pannier, L., Mangin, J.F., Dehaene-Lambertz, G., & Poupon, C. (2014). Correction strategy for diffusion-weighted images corrupted with motion: application to the dti evaluation of infants’ white matter. Magnetic Resonance Imaging, 32(8), 981–992.CrossRefPubMed
Zurück zum Zitat Duclap, D., Lebois, A., Schmitt, B., Riff, O., Guevara, P., Marrakchi-Kacem, L., Brion, V., Poupon, F., Mangin, J. F., & Poupon, C. (2012). Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. In ESMRMB 2012. Duclap, D., Lebois, A., Schmitt, B., Riff, O., Guevara, P., Marrakchi-Kacem, L., Brion, V., Poupon, F., Mangin, J. F., & Poupon, C. (2012). Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. In ESMRMB 2012.
Zurück zum Zitat Eklund, A., Dufort, P., Forsberg, D., & LaConte, S.M. (2013). Medical image processing on the GPU - past, present and future. Medical Image Analysis, 17(8), 1073–1094.CrossRefPubMed Eklund, A., Dufort, P., Forsberg, D., & LaConte, S.M. (2013). Medical image processing on the GPU - past, present and future. Medical Image Analysis, 17(8), 1073–1094.CrossRefPubMed
Zurück zum Zitat Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., & Nimmo-Smith, I. (2012). Quickbundles, a method for tractography simplification. Frontiers in Neuroscience, 6(175). Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., & Nimmo-Smith, I. (2012). Quickbundles, a method for tractography simplification. Frontiers in Neuroscience, 6(175).
Zurück zum Zitat Garyfallidis, E., Ocegueda, O., Wassermann, D., & Descoteaux, M. (2015). Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage, 117, 124–140.CrossRefPubMed Garyfallidis, E., Ocegueda, O., Wassermann, D., & Descoteaux, M. (2015). Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage, 117, 124–140.CrossRefPubMed
Zurück zum Zitat Golby, A.J., Kindlmann, G., Norton, I., Yarmarkovich, A., Pieper, S., & Kikinis, R. (2011). Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery, 68(2), 496–505.CrossRefPubMedPubMedCentral Golby, A.J., Kindlmann, G., Norton, I., Yarmarkovich, A., Pieper, S., & Kikinis, R. (2011). Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery, 68(2), 496–505.CrossRefPubMedPubMedCentral
Zurück zum Zitat Guevara, P., Poupon, C., Riviére, D., Cointepas, Y., Descoteaux, M., Thirion, B., & Mangin, J.F. (2011). Robust clustering of massive tractography datasets. NeuroImage, 54(3), 1975–1993.CrossRefPubMed Guevara, P., Poupon, C., Riviére, D., Cointepas, Y., Descoteaux, M., Thirion, B., & Mangin, J.F. (2011). Robust clustering of massive tractography datasets. NeuroImage, 54(3), 1975–1993.CrossRefPubMed
Zurück zum Zitat Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Lebihan, D., Leboyer, M., Houenou, J., & Mangin, J.F. (2012). Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage, 61(4), 1083–1099.CrossRefPubMed Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Lebihan, D., Leboyer, M., Houenou, J., & Mangin, J.F. (2012). Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage, 61(4), 1083–1099.CrossRefPubMed
Zurück zum Zitat Lawes, I.N.C., Barrick, T.R., Murugam, V., Spierings, N., Evans, D.R., Song, M., & Clark, C.A. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage, 39(1), 62–79.CrossRefPubMed Lawes, I.N.C., Barrick, T.R., Murugam, V., Spierings, N., Evans, D.R., Song, M., & Clark, C.A. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage, 39(1), 62–79.CrossRefPubMed
Zurück zum Zitat Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546.CrossRefPubMed Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546.CrossRefPubMed
Zurück zum Zitat Lee, J., & Kim, D.S. (2013). Divide et impera: Acceleration of dti tractography using multi-gpu parallel processing. 2013 Wiley Periodicals. Inc Int J Imaging Published online in Wiley Online Library, 23(30), 256–264. Lee, J., & Kim, D.S. (2013). Divide et impera: Acceleration of dti tractography using multi-gpu parallel processing. 2013 Wiley Periodicals. Inc Int J Imaging Published online in Wiley Online Library, 23(30), 256–264.
Zurück zum Zitat Maddah, M., Eric, W., Grimson, L., Warfield, S.K., & Wells, W.M. (2007). A unified framework for clustering and quantitative analysis of white matter fiber tracts. Medical Image Analysis, 12(2), 191–202.CrossRefPubMedPubMedCentral Maddah, M., Eric, W., Grimson, L., Warfield, S.K., & Wells, W.M. (2007). A unified framework for clustering and quantitative analysis of white matter fiber tracts. Medical Image Analysis, 12(2), 191–202.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mai, S.T., Goebl, S., & Plant, C. (2012). A similarity model and segmentation algorithm for white matter fiber tracts. In IEEE 12th International Conference on Data Mining (pp. 1014–1019). Mai, S.T., Goebl, S., & Plant, C. (2012). A similarity model and segmentation algorithm for white matter fiber tracts. In IEEE 12th International Conference on Data Mining (pp. 1014–1019).
Zurück zum Zitat Mittmann, A., Nobrega, T.H.C., Comunello, E., Pinto, J.P.O., Dellani, P.R., Stoeter, P., & von Wangenheim, A. (2011). Performing real-time interactive fiber tracking. Journal of Digital Imaging, 24(2), 339–351.CrossRefPubMed Mittmann, A., Nobrega, T.H.C., Comunello, E., Pinto, J.P.O., Dellani, P.R., Stoeter, P., & von Wangenheim, A. (2011). Performing real-time interactive fiber tracking. Journal of Digital Imaging, 24(2), 339–351.CrossRefPubMed
Zurück zum Zitat Nowinski, W.L., Chua, B.C., Yang, G.L., & Qian, G.Y. (2011). Three-dimensional interactive and stereotactic human brain atlas of white matter tracts. Neuroinformatics, 10(1), 33–55.CrossRef Nowinski, W.L., Chua, B.C., Yang, G.L., & Qian, G.Y. (2011). Three-dimensional interactive and stereotactic human brain atlas of white matter tracts. Neuroinformatics, 10(1), 33–55.CrossRef
Zurück zum Zitat O’Donnell, L., & Westin, C.F. (2007). Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Transactions on Medical Imaging, 26(11), 1562–1575.CrossRefPubMed O’Donnell, L., & Westin, C.F. (2007). Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Transactions on Medical Imaging, 26(11), 1562–1575.CrossRefPubMed
Zurück zum Zitat O’Donnell, L.J., Westin, C.F., & Golby, A.J. (2009). Tract-based morphometry for white matter group analysis. NeuroImage, 45(3), 832–844.CrossRefPubMed O’Donnell, L.J., Westin, C.F., & Golby, A.J. (2009). Tract-based morphometry for white matter group analysis. NeuroImage, 45(3), 832–844.CrossRefPubMed
Zurück zum Zitat Prados, F., Boada, I., Feixas, M., Prats-Galino, A., Blasco, G., Puig, J., & Pedraza, S. (2012). Information-theoretic approach for automated white matter fiber tracts reconstruction. Neuroinformatics, 10(3), 305–318.CrossRefPubMed Prados, F., Boada, I., Feixas, M., Prats-Galino, A., Blasco, G., Puig, J., & Pedraza, S. (2012). Information-theoretic approach for automated white matter fiber tracts reconstruction. Neuroinformatics, 10(3), 305–318.CrossRefPubMed
Zurück zum Zitat Ros, C., Tandetzky, R., Güllmar, D., & Reichenbach, J. (2011). GPGPU computing for the cluster analysis of fiber tracts: Replacing a $ 15000 high end PC with a $500 graphics card. In ISMRM 2011. Ros, C., Tandetzky, R., Güllmar, D., & Reichenbach, J. (2011). GPGPU computing for the cluster analysis of fiber tracts: Replacing a $ 15000 high end PC with a $500 graphics card. In ISMRM 2011.
Zurück zum Zitat Ros, C., Güllmar, D., Stenze, M., Mentzel, H.J., & Reichenbach, J.R. (2012). Quantitative fiber bundle-based analysis of diffusion-weighted mri data. Biomed Tech (Berl), 57(SI-1), 530–533. Ros, C., Güllmar, D., Stenze, M., Mentzel, H.J., & Reichenbach, J.R. (2012). Quantitative fiber bundle-based analysis of diffusion-weighted mri data. Biomed Tech (Berl), 57(SI-1), 530–533.
Zurück zum Zitat Ros, C., Gllmar, D., Stenzel, M., Mentzel, H.J., & Reichenbach, J.R. (2013). Atlas-guided cluster analysis of large tractography datasets. PLoS One 8(12), e83, 847. Ros, C., Gllmar, D., Stenzel, M., Mentzel, H.J., & Reichenbach, J.R. (2013). Atlas-guided cluster analysis of large tractography datasets. PLoS One 8(12), e83, 847.
Zurück zum Zitat Sarrazin, S., Poupon, C., Linke, J., Wessa, M., Phillips, M., Delavest, M., Versace, A., Almeida, J., Guevara, P., Duclap, D., Duchesnay, E., Mangin, J.F., Dudal, K.L., Daban, C., Hamdani, N., D’Albis, M.A., Leboyer, M., & Houenou, J. (2014). A multicenter tractography study of deep white matter tracts in bipolar i disorder: Psychotic features and interhemispheric disconnectivity. JAMA Psychiatry, 71(4), 388–396.CrossRefPubMed Sarrazin, S., Poupon, C., Linke, J., Wessa, M., Phillips, M., Delavest, M., Versace, A., Almeida, J., Guevara, P., Duclap, D., Duchesnay, E., Mangin, J.F., Dudal, K.L., Daban, C., Hamdani, N., D’Albis, M.A., Leboyer, M., & Houenou, J. (2014). A multicenter tractography study of deep white matter tracts in bipolar i disorder: Psychotic features and interhemispheric disconnectivity. JAMA Psychiatry, 71(4), 388–396.CrossRefPubMed
Zurück zum Zitat Schmitt, B., Lebois, A., Duclap, D., Guevara, P., Poupon, F., Rivière, D., Cointepas, Y., LeBihan, D., Mangin, J.F., & Poupon, C. (2012). Connect/archi: an open database to infer atlases of the human brain connectivity. In ESMRMB conference. Schmitt, B., Lebois, A., Duclap, D., Guevara, P., Poupon, F., Rivière, D., Cointepas, Y., LeBihan, D., Mangin, J.F., & Poupon, C. (2012). Connect/archi: an open database to infer atlases of the human brain connectivity. In ESMRMB conference.
Zurück zum Zitat Sullivan, E.V., Rohlfing, T., & Pfefferbaum, A. (2010). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiology of Aging, 31(3), 464–481.CrossRefPubMed Sullivan, E.V., Rohlfing, T., & Pfefferbaum, A. (2010). Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: relations to timed performance. Neurobiology of Aging, 31(3), 464–481.CrossRefPubMed
Zurück zum Zitat Sun, Z.Y., Houenou, J., Duclap, D, Sarrazin, S., Linke, J., Daban, C., Hamdani, N., d’Albis, M.A., Corvoisier, P.L., Guevara, P., Delavest, M., Bellivier, F., Almeida, J., Versace, A., Poupon, C., Leboyer, M., Phillips, M., Wessa, M., & Mangin, J.F. (2016). Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder. Journal of Psychiatry and Neuroscience In press. Sun, Z.Y., Houenou, J., Duclap, D, Sarrazin, S., Linke, J., Daban, C., Hamdani, N., d’Albis, M.A., Corvoisier, P.L., Guevara, P., Delavest, M., Bellivier, F., Almeida, J., Versace, A., Poupon, C., Leboyer, M., Phillips, M., Wessa, M., & Mangin, J.F. (2016). Shape analysis of the cingulum, uncinate and arcuate fasciculi in patients with bipolar disorder. Journal of Psychiatry and Neuroscience In press.
Zurück zum Zitat Visser, E., Nijhuis, E.H.J., Buitelaar, J.K., & Zwiers, M.P. (2011). Partition-based mass clustering of tractography streamlines. NeuroImage, 54(1), 303–312.CrossRefPubMed Visser, E., Nijhuis, E.H.J., Buitelaar, J.K., & Zwiers, M.P. (2011). Partition-based mass clustering of tractography streamlines. NeuroImage, 54(1), 303–312.CrossRefPubMed
Zurück zum Zitat Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., & Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage, 36(3), 630–644.CrossRefPubMedPubMedCentral Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., & Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage, 36(3), 630–644.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang, X., Grimson, W.E.L., & Westin, C.F. (2011). Tractography segmentation using a hierarchical dirichlet processes mixture model. NeuroImage, 54(1), 290–302.CrossRefPubMed Wang, X., Grimson, W.E.L., & Westin, C.F. (2011). Tractography segmentation using a hierarchical dirichlet processes mixture model. NeuroImage, 54(1), 290–302.CrossRefPubMed
Zurück zum Zitat Wang, Y., Du, H., Xia, M., Ren, L., & Xu, M. (2013). A hybrid cpu-gpu accelerated framework for fast mapping of high-resolution human brain connectome. PLOS ONE 8(5), e62, 789. Wang, Y., Du, H., Xia, M., Ren, L., & Xu, M. (2013). A hybrid cpu-gpu accelerated framework for fast mapping of high-resolution human brain connectome. PLOS ONE 8(5), e62, 789.
Zurück zum Zitat Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., & Deriche, R. (2010). Unsupervised white matter fiber clustering and tract probability map generation: Applications of a gaussian process framework for white matter fibers. NeuroImage, 51, 228–241.CrossRefPubMedPubMedCentral Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., & Deriche, R. (2010). Unsupervised white matter fiber clustering and tract probability map generation: Applications of a gaussian process framework for white matter fibers. NeuroImage, 51, 228–241.CrossRefPubMedPubMedCentral
Zurück zum Zitat Xu, M., Zhang, X., Wang, Y., Ren, L., Wen, Z., Xu, Y., Gong, G., Xu, N., & Yang, H., (2012). Probabilistic brain fiber tractography on gpus, USA, Washington, DC. Xu, M., Zhang, X., Wang, Y., Ren, L., Wen, Z., Xu, Y., Gong, G., Xu, N., & Yang, H., (2012). Probabilistic brain fiber tractography on gpus, USA, Washington, DC.
Zurück zum Zitat Yoo, S.W., Guevara, P., Jeong, Y., Yoo, K., Shin, J.S., Mangin, J.F., & Seong, J.K. (2015). An example-based multi-atlas approach to automatic labeling of white matter tracts. PLoS ONE 10(7), e0133, 337. Yoo, S.W., Guevara, P., Jeong, Y., Yoo, K., Shin, J.S., Mangin, J.F., & Seong, J.K. (2015). An example-based multi-atlas approach to automatic labeling of white matter tracts. PLoS ONE 10(7), e0133, 337.
Zurück zum Zitat Zhang, Y., Zhang, J., Oishi, K., & et al. (2010). Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage, 52(4), 1289–1301.CrossRefPubMedPubMedCentral Zhang, Y., Zhang, J., Oishi, K., & et al. (2010). Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage, 52(4), 1289–1301.CrossRefPubMedPubMedCentral
Metadaten
Titel
Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas
verfasst von
Nicole Labra
Pamela Guevara
Delphine Duclap
Josselin Houenou
Cyril Poupon
Jean-François Mangin
Miguel Figueroa
Publikationsdatum
08.10.2016
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 1/2017
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-016-9316-7

Weitere Artikel der Ausgabe 1/2017

Neuroinformatics 1/2017 Zur Ausgabe