1.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. arXiv preprint
arXiv:1506.02640 (2015)
2.
Treisman, A., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol.
12, 97–136 (1980)
CrossRef
3.
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Pattern Recognition (CVPR) (2005)
4.
Han, F., Shan, Y., Cekander, R., Sawhney, H., Kumar, R.: A twostage approach to people and vehicle detection with hog-based svm. In: Proceedings of the Performance Metrics for Intelligent Systems Workshop (2006)
5.
Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The Pascal visual object classes (voc) challenge. Int. J. Comput. Vis.
88, 303–338 (2010)
CrossRef
6.
Sergeant, D., Boyle, R., Forbes, M.: Computer visual tracking of poultry. Comput. Electron. Agric.
21, 1–18 (1998)
CrossRef
7.
Steen, K., Therkildsen, O., Green, O., Karstoft, H.: Detection of bird nests during mechanical weeding by incremental background modeling and visual saliency. Sensors
15(3), 5096–5111 (2015)
CrossRef
8.
Wu, X., Yuan, P., Peng, Q., Ngo, C., He, J.: Detection of bird nests in overhead catenary system images for high-speed rail. Pattern Recogn.
51, 242–254 (2016)
CrossRef
9.
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)
10.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015)
11.
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint
arXiv:1312.6229 (2013)
12.
Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition. Int. J. Comput. Vis.
104, 154–171 (2013)
CrossRef
13.
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014). doi:
10.1007/978-3-319-10602-1_26
14.
Benenson, R., Mathias, M., Timofte, R., Gool, L.V.: Pedestrian detection at 100 frames per second. In: Computer Vision and Pattern Recognition (CVPR) (2012)
15.
Mathias, M., Timofte, R., Benenson, R., Gool, L.V.: Traffic sign recognition how far are we from the solution? In: International Joint Conference on Neural Networks (2013)
16.
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 91–99 (2015)
18.
Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: Computer Vision and Pattern Recognition (CVPR) (2013)
19.
Wang, N., Yeung, D.: Learning a deep compact image representation for visual tracking. In: Advances in Neural Information Processing Systems (NIPS) (2013)
20.
Li, H., Li, Y., Porikli, F.: Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking. In: British Machine Vision Conference (BMVC) (2014)
21.
Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: International Conference on Computer Vision (ICCV) (2015)
22.
Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R.: Incorporating second-order functional knowledge for better option pricing. In: Advances in Neural Information Processing Systems (NIPS), pp. 472–478 (2001)
23.
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). doi:
10.1007/978-3-642-33765-9_50
CrossRef
24.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
26.
Huang, L., Yang, Y., Deng, Y., Yu, Y.: Densebox: unifying landmark localization with end to end object detection. arXiv preprint
arXiv:1509.04874 (2015)
27.
He, K., Zhang, X., Ren, R., Sun, J.: Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385 (2015)
28.
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). doi:
10.1007/978-3-642-33712-3_62
CrossRef
29.
Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparsity-based collaborative model. In: Computer Vision and Pattern Recognition (CVPR) (2012)