Skip to main content
Erschienen in: Experiments in Fluids 11/2020

01.11.2020 | Research Article

Fast, flexible and low-cost multiphase blood analogue for biomedical and energy applications

verfasst von: R. Lima, E. J. Vega, A. S. Moita, J. M. Miranda, D. Pinho, A. L. N. Moreira

Erschienen in: Experiments in Fluids | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the last two decades, several kinds of particulate blood analogue fluids have been proposed, but none of those were able to mimic the multiphase effects of real blood. Hence, it is clear that it is crucial to develop a simple multiphase blood analogue to be used for in vitro experiments at both macro- and microscale level. To the best of our knowledge, the present work shows for the first time a straightforward and extremely stable blood analogue fluid able to mimic multiphase blood flow phenomena. The present work proposes a simple, low-cost and stable multiphase blood analogue with the ability to mimic microscale blood flow phenomena. The proposed analogue fluid is composed of Brij L4 surfactant micelles suspended in pure water and is extremely easy to be produced. To investigate the ability of this analogue to mimic microscale blood flow phenomena, flow visualizations were performed in a microchannel constriction. In vitro blood phenomena were compared with the measurements performed with the proposed analogue fluid. Additionally, rheological measurements of the multiphase blood analogue were acquired by means of a stress-controlled rheometer and compared with in vitro blood sample viscosity curves. Overall, the results indicate that it is possible to produce a stable particulate fluid with geometrical, mechanical and flow properties similar to in vitro blood. Hence, the proposed analogue has a great potential to be used in flow experiments from macro- to nanoscale levels.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abkarian M, Faivre M, Horton R, Smistrup K, Best-Popescu CA, Stone HA (2008) Cellular-scale hydrodynamics. Biomed Mater 3:034011CrossRef Abkarian M, Faivre M, Horton R, Smistrup K, Best-Popescu CA, Stone HA (2008) Cellular-scale hydrodynamics. Biomed Mater 3:034011CrossRef
Zurück zum Zitat Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophoton Int 11:36–42 Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophoton Int 11:36–42
Zurück zum Zitat Agujetas R, Ferrera C, Marcos A, Alejo J, Montanero JM (2017) Numerical and experimental analysis of the transitional flow across a real stenosis. Biomech Model Mechanobiol 16:1447–1458CrossRef Agujetas R, Ferrera C, Marcos A, Alejo J, Montanero JM (2017) Numerical and experimental analysis of the transitional flow across a real stenosis. Biomech Model Mechanobiol 16:1447–1458CrossRef
Zurück zum Zitat Anes CF, Pinho D, Muñoz-Sánchez BN, Vega E, Lima R (2018) Shrinkage and colour in the production of micro-sized PDMS particles for microfluidic applications. J Micromech Microeng 28:075002CrossRef Anes CF, Pinho D, Muñoz-Sánchez BN, Vega E, Lima R (2018) Shrinkage and colour in the production of micro-sized PDMS particles for microfluidic applications. J Micromech Microeng 28:075002CrossRef
Zurück zum Zitat Bento D, Rodrigues RO, Faustino V et al (2018) Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: flow visualizations and measurements. Micromachines 9:151CrossRef Bento D, Rodrigues RO, Faustino V et al (2018) Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: flow visualizations and measurements. Micromachines 9:151CrossRef
Zurück zum Zitat Bento D, Fernandes CS, Miranda JM, Lima R (2019) In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Exp Thermal Fluid Sci 109:109847CrossRef Bento D, Fernandes CS, Miranda JM, Lima R (2019) In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Exp Thermal Fluid Sci 109:109847CrossRef
Zurück zum Zitat Bento D, Lopes S, Maia I, Lima R, Miranda JM (2020) Bubbles moving in blood flow in a microchannel network: the effect on the local hematocrit. Micromachines 11:344CrossRef Bento D, Lopes S, Maia I, Lima R, Miranda JM (2020) Bubbles moving in blood flow in a microchannel network: the effect on the local hematocrit. Micromachines 11:344CrossRef
Zurück zum Zitat Brindise MC, Busse MM, Vlachos PP (2018) Density-and viscosity-matched Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index. Exp Fluids 59:173CrossRef Brindise MC, Busse MM, Vlachos PP (2018) Density-and viscosity-matched Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index. Exp Fluids 59:173CrossRef
Zurück zum Zitat Buchmann N, Atkinson C, Jeremy M, Soria J (2011) Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp Fluids 50:1131–1151CrossRef Buchmann N, Atkinson C, Jeremy M, Soria J (2011) Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp Fluids 50:1131–1151CrossRef
Zurück zum Zitat Calejo J, Pinho D, Galindo-Rosales FJ, Lima R, Campo-Deaño L (2016) Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction. Micromachines 7:4CrossRef Calejo J, Pinho D, Galindo-Rosales FJ, Lima R, Campo-Deaño L (2016) Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction. Micromachines 7:4CrossRef
Zurück zum Zitat Campo-Deaño L, Dullens RP, Aarts DG, Pinho FT, Oliveira MS (2013) Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics 7:034102CrossRef Campo-Deaño L, Dullens RP, Aarts DG, Pinho FT, Oliveira MS (2013) Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics 7:034102CrossRef
Zurück zum Zitat Campos R, Caldas R, Lima R, Campo-Deaño L (2017) Blood analogue fluid flows in complex geometries. In: The multidisciplinary science of rheology—towards a healthy and sustainable development. IBEREO, Valencia, p 137 Campos R, Caldas R, Lima R, Campo-Deaño L (2017) Blood analogue fluid flows in complex geometries. In: The multidisciplinary science of rheology—towards a healthy and sustainable development. IBEREO, Valencia, p 137
Zurück zum Zitat Caro C, Pedley T, Schroter R, Seed W (1978) The mechanics of the circulation. Oxford University Press, OxfordMATH Caro C, Pedley T, Schroter R, Seed W (1978) The mechanics of the circulation. Oxford University Press, OxfordMATH
Zurück zum Zitat Carvalho DAM, Rodrigues ARO, Faustino V, Pinho D, Castanheira EMS, Lima R (2018) Microfluidic deformability study of an innovative blood analogue fluid based on giant unilamellar vesicles. J Funct Biomater 9:70CrossRef Carvalho DAM, Rodrigues ARO, Faustino V, Pinho D, Castanheira EMS, Lima R (2018) Microfluidic deformability study of an innovative blood analogue fluid based on giant unilamellar vesicles. J Funct Biomater 9:70CrossRef
Zurück zum Zitat Catarino SO, Rodrigues RO, Pinho D, Miranda JM, Minas G, Lima R (2019) Blood cells separation and sorting techniques of passive microfluidic devices: from fabrication to applications. Micromachines 10:593CrossRef Catarino SO, Rodrigues RO, Pinho D, Miranda JM, Minas G, Lima R (2019) Blood cells separation and sorting techniques of passive microfluidic devices: from fabrication to applications. Micromachines 10:593CrossRef
Zurück zum Zitat Cimrak I, Gusenbauer M, Jancigova I (2014) An ESPResSo implementation of elastic objects immersed in a fluid. Comput Phys Commun 185(3):900–907MATHCrossRef Cimrak I, Gusenbauer M, Jancigova I (2014) An ESPResSo implementation of elastic objects immersed in a fluid. Comput Phys Commun 185(3):900–907MATHCrossRef
Zurück zum Zitat Completo C, Geraldes V, Semiao V (2014) Rheological and dynamical characterization of blood analogue flows in a slit. Int J Heat Fluid Flow 46:17–28CrossRef Completo C, Geraldes V, Semiao V (2014) Rheological and dynamical characterization of blood analogue flows in a slit. Int J Heat Fluid Flow 46:17–28CrossRef
Zurück zum Zitat Deplano V, Knapp Y, Bailly L, Bertrand E (2014) Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. J Biomech 47:1262–1269CrossRef Deplano V, Knapp Y, Bailly L, Bertrand E (2014) Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. J Biomech 47:1262–1269CrossRef
Zurück zum Zitat Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci 106:21495–21499CrossRef Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci 106:21495–21499CrossRef
Zurück zum Zitat Doutel E, Carneiro J, Oliveira M, Campos J, Miranda J (2015) Fabrication of 3D mili-scale channels for hemodynamic studies. J Mech Med Biol 15:1550004CrossRef Doutel E, Carneiro J, Oliveira M, Campos J, Miranda J (2015) Fabrication of 3D mili-scale channels for hemodynamic studies. J Mech Med Biol 15:1550004CrossRef
Zurück zum Zitat Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49:2280–2292CrossRef Faustino V, Catarino SO, Lima R, Minas G (2016) Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 49:2280–2292CrossRef
Zurück zum Zitat Faustino V, Rodrigues RO, Pinho D et al (2019) A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel. Micromachines 10:645CrossRef Faustino V, Rodrigues RO, Pinho D et al (2019) A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel. Micromachines 10:645CrossRef
Zurück zum Zitat Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics. Rheol Dyn Biophys J 98(10):2215–2225 Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics. Rheol Dyn Biophys J 98(10):2215–2225
Zurück zum Zitat Gambaruto AM (2016) Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section. J Biomech 49:2229–2240CrossRef Gambaruto AM (2016) Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section. J Biomech 49:2229–2240CrossRef
Zurück zum Zitat Geoghegan P, Buchmann N, Spence C, Moore S, Jermy M (2012) Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp Fluids 52:1331–1347CrossRef Geoghegan P, Buchmann N, Spence C, Moore S, Jermy M (2012) Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp Fluids 52:1331–1347CrossRef
Zurück zum Zitat Gray J, Owen I, Escudier M (2007) Dynamic scaling of unsteady shear-thinning non-Newtonian fluid flows in a large-scale model of a distal anastomosis. Exp Fluids 43:535–546CrossRef Gray J, Owen I, Escudier M (2007) Dynamic scaling of unsteady shear-thinning non-Newtonian fluid flows in a large-scale model of a distal anastomosis. Exp Fluids 43:535–546CrossRef
Zurück zum Zitat Hoi Y, Woodward SH, Kim M, Taulbee DB, Meng H (2006) Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng 128(6):844–851CrossRef Hoi Y, Woodward SH, Kim M, Taulbee DB, Meng H (2006) Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng 128(6):844–851CrossRef
Zurück zum Zitat Imai Y, Omori T, Shimogonya Y, Yamaguchi T, Ishikawa T (2016) Numerical methods for simulating blood flow at macro, micro, and multi scales. J Biomech 49:2221–2228CrossRef Imai Y, Omori T, Shimogonya Y, Yamaguchi T, Ishikawa T (2016) Numerical methods for simulating blood flow at macro, micro, and multi scales. J Biomech 49:2221–2228CrossRef
Zurück zum Zitat Ishikawa T, Fujiwara H, Matsuki N et al (2011) Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed Microdevice 13:159–167CrossRef Ishikawa T, Fujiwara H, Matsuki N et al (2011) Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence. Biomed Microdevice 13:159–167CrossRef
Zurück zum Zitat Ju X, Wang X, Liu Z, Xie R, Wang W, Chu L (2017) Red-blood-cell-shaped chitosan microparticles prepared by electrospraying. Particuology 30:151–157CrossRef Ju X, Wang X, Liu Z, Xie R, Wang W, Chu L (2017) Red-blood-cell-shaped chitosan microparticles prepared by electrospraying. Particuology 30:151–157CrossRef
Zurück zum Zitat Kawaguchi M, Fukui T, Funamoto K, Tanaka M, Tanaka M, Murata S, Miyauchi S, Hayase T (2019) Viscosity estimation of a suspension with rigid spheres in circular microchannels using particle tracking velocimetry. Micromachines 10:675CrossRef Kawaguchi M, Fukui T, Funamoto K, Tanaka M, Tanaka M, Murata S, Miyauchi S, Hayase T (2019) Viscosity estimation of a suspension with rigid spheres in circular microchannels using particle tracking velocimetry. Micromachines 10:675CrossRef
Zurück zum Zitat Kim S, Kong RL, Popel AS, Intaglietta M, Johnson PC (2006) A computer-based method for determination of the cell-free layer width in microcirculation. Microcirculation 13:199–207CrossRef Kim S, Kong RL, Popel AS, Intaglietta M, Johnson PC (2006) A computer-based method for determination of the cell-free layer width in microcirculation. Microcirculation 13:199–207CrossRef
Zurück zum Zitat Kim S, Ong PK, Yalcin O, Intaglietta M, Johnson PC (2009) The cell-free layer in microvascular blood flow. Biorheology 46:181–189CrossRef Kim S, Ong PK, Yalcin O, Intaglietta M, Johnson PC (2009) The cell-free layer in microvascular blood flow. Biorheology 46:181–189CrossRef
Zurück zum Zitat Kodama Y, Aoki H, Yamagata Y, Tsubota K (2019) In vitro analysis of blood flow in a microvascular network with realistic geometry. J Biomech 88:88–94CrossRef Kodama Y, Aoki H, Yamagata Y, Tsubota K (2019) In vitro analysis of blood flow in a microvascular network with realistic geometry. J Biomech 88:88–94CrossRef
Zurück zum Zitat Leble V, Lima R, Dias R et al (2011) Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics 5:044120CrossRef Leble V, Lima R, Dias R et al (2011) Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics 5:044120CrossRef
Zurück zum Zitat Lima R, Vega EJ, Cardoso V, Minas G, Montanero JM (2019) Magnetic PDMS microparticles for biomedical and energy applications ECCOMAS thematic conference on computational vision and medical image processing. Springer, New York, pp 578–584 Lima R, Vega EJ, Cardoso V, Minas G, Montanero JM (2019) Magnetic PDMS microparticles for biomedical and energy applications ECCOMAS thematic conference on computational vision and medical image processing. Springer, New York, pp 578–584
Zurück zum Zitat Maruyama O, Yamane T, Nishida M et al (2002) Fractural characteristic evaluation of a microcapsule suspension using a rotational shear stressor. ASAIO J 48:365–373CrossRef Maruyama O, Yamane T, Nishida M et al (2002) Fractural characteristic evaluation of a microcapsule suspension using a rotational shear stressor. ASAIO J 48:365–373CrossRef
Zurück zum Zitat Moita AS, Caldeira C, Gonçalves I, Lima R, Vega EJ, Moreira ALN (2020) Analogue fluids for cell deformability studies in microfluidic devices. In: Roque A, et al. (eds) Biomedical engineering systems and technologies. BIOSTEC 2019. Communications in computer and information science. Springer, Cham1211 Moita AS, Caldeira C, Gonçalves I, Lima R, Vega EJ, Moreira ALN (2020) Analogue fluids for cell deformability studies in microfluidic devices. In: Roque A, et al. (eds) Biomedical engineering systems and technologies. BIOSTEC 2019. Communications in computer and information science. Springer, Cham1211
Zurück zum Zitat Muñoz-Sánchez BN, Silva S, Pinho D, Vega E, Lima R (2016) Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 10:014122CrossRef Muñoz-Sánchez BN, Silva S, Pinho D, Vega E, Lima R (2016) Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications. Biomicrofluidics 10:014122CrossRef
Zurück zum Zitat Najjari MR, Hinke JA, Bulusu KV, Plesniak MW (2016) On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp Fluids 57:96CrossRef Najjari MR, Hinke JA, Bulusu KV, Plesniak MW (2016) On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp Fluids 57:96CrossRef
Zurück zum Zitat Nakamura M, Bessho S, Wada S (2013) Spring-network-based model of a red blood cell for simulating mesoscopic blood flow. Int J Numer Methods Biomed Eng 29:114–128MathSciNetCrossRef Nakamura M, Bessho S, Wada S (2013) Spring-network-based model of a red blood cell for simulating mesoscopic blood flow. Int J Numer Methods Biomed Eng 29:114–128MathSciNetCrossRef
Zurück zum Zitat Namgung B, Liang LH, Kim S (2014) Physiological significance of cell-free layer and experimental determination of its width in microcirculatory vessels Visualization and simulation of complex flows in biomedical engineering. Springer, New York, pp 75–87CrossRef Namgung B, Liang LH, Kim S (2014) Physiological significance of cell-free layer and experimental determination of its width in microcirculatory vessels Visualization and simulation of complex flows in biomedical engineering. Springer, New York, pp 75–87CrossRef
Zurück zum Zitat Nguyen T, Biadillah Y, Mongrain R, Brunettea J, Tardif J-C, Bertrand O (2004) A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. J Biomech Eng 126:529–535CrossRef Nguyen T, Biadillah Y, Mongrain R, Brunettea J, Tardif J-C, Bertrand O (2004) A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. J Biomech Eng 126:529–535CrossRef
Zurück zum Zitat Ong PK, Jain S, Kim S (2012) Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles. Microvasc Res 83:118–125CrossRef Ong PK, Jain S, Kim S (2012) Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles. Microvasc Res 83:118–125CrossRef
Zurück zum Zitat Pang C, Lee JW, Kang YT (2015) Review on combined heat and mass transfer characteristics in nanofluids. Int J Therm Sci 87:49–67CrossRef Pang C, Lee JW, Kang YT (2015) Review on combined heat and mass transfer characteristics in nanofluids. Int J Therm Sci 87:49–67CrossRef
Zurück zum Zitat Pinho D, Rodrigues RO, Faustino V, Yaginuma T, Exposto J, Lima R (2016) Red blood cells radial dispersion in blood flowing through microchannels: the role of temperature. J Biomech 49:2293–2298CrossRef Pinho D, Rodrigues RO, Faustino V, Yaginuma T, Exposto J, Lima R (2016) Red blood cells radial dispersion in blood flowing through microchannels: the role of temperature. J Biomech 49:2293–2298CrossRef
Zurück zum Zitat Pinho D, Campo-Deano L, Lima R, Pinho FT (2017) In vitro particulate analogue fluids for experimental studies of rheological and hemorheological behavior of glucose-rich RBC suspensions. Biomicrofluidics 11:054105CrossRef Pinho D, Campo-Deano L, Lima R, Pinho FT (2017) In vitro particulate analogue fluids for experimental studies of rheological and hemorheological behavior of glucose-rich RBC suspensions. Biomicrofluidics 11:054105CrossRef
Zurück zum Zitat Pinho D, Muñoz-Sánchez B, Anes C, Vega E, Lima R (2019) Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids. Mech Res Commun 100:103399CrossRef Pinho D, Muñoz-Sánchez B, Anes C, Vega E, Lima R (2019) Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids. Mech Res Commun 100:103399CrossRef
Zurück zum Zitat Rodrigues RO, Lopes R, Pinho D et al (2016) In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements. BioChip J 10:9–15CrossRef Rodrigues RO, Lopes R, Pinho D et al (2016) In vitro blood flow and cell-free layer in hyperbolic microchannels: visualizations and measurements. BioChip J 10:9–15CrossRef
Zurück zum Zitat Saidur R, Leong K, Mohammed HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668CrossRef Saidur R, Leong K, Mohammed HA (2011) A review on applications and challenges of nanofluids. Renew Sustain Energy Rev 15:1646–1668CrossRef
Zurück zum Zitat She S, Li Q, Shan B, Tong W, Gao C (2013) Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv Mater 25:5814–5818CrossRef She S, Li Q, Shan B, Tong W, Gao C (2013) Fabrication of red-blood-cell-like polyelectrolyte microcapsules and their deformation and recovery behavior through a microcapillary. Adv Mater 25:5814–5818CrossRef
Zurück zum Zitat Sousa P, Pinho F, Oliveira M, Alves M (2011) Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:014108CrossRef Sousa P, Pinho F, Oliveira M, Alves M (2011) Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:014108CrossRef
Zurück zum Zitat Souza A et al (2020) 3D manufacturing of intracranial aneurysm biomodels for flow visualizations: low cost fabrication processes. Mech Res Commun 107:103535CrossRef Souza A et al (2020) 3D manufacturing of intracranial aneurysm biomodels for flow visualizations: low cost fabrication processes. Mech Res Commun 107:103535CrossRef
Zurück zum Zitat Tateishi N, Suzuki Y, Soutani M, Maeda N (1994) Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance. J Biomech 27:1119–1125CrossRef Tateishi N, Suzuki Y, Soutani M, Maeda N (1994) Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance. J Biomech 27:1119–1125CrossRef
Zurück zum Zitat Tripathi S, Kumar YBV, Prabhakar A, Joshi SS, Agrawal A (2015) Passive blood plasma separation at the microscale: a review of design principles and microdevices. J Micromech Microeng 25:083001CrossRef Tripathi S, Kumar YBV, Prabhakar A, Joshi SS, Agrawal A (2015) Passive blood plasma separation at the microscale: a review of design principles and microdevices. J Micromech Microeng 25:083001CrossRef
Zurück zum Zitat Tsubota K-I, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Prog Biomed 83:139–146CrossRef Tsubota K-I, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Prog Biomed 83:139–146CrossRef
Zurück zum Zitat Wasbrough MJ, Edler KJ, Hawley AM, Holdaway JA, Price GJ (2012) Control of mesostructure in self-assembled polymer/surfactant films by rational micelle design. Soft Matter 8:3357–3362CrossRef Wasbrough MJ, Edler KJ, Hawley AM, Holdaway JA, Price GJ (2012) Control of mesostructure in self-assembled polymer/surfactant films by rational micelle design. Soft Matter 8:3357–3362CrossRef
Zurück zum Zitat Wong KH, Chan JM, Kamm RD, Tien J (2012) Microfluidic models of vascular functions. Annu Rev Biomed Eng 14:205–230CrossRef Wong KH, Chan JM, Kamm RD, Tien J (2012) Microfluidic models of vascular functions. Annu Rev Biomed Eng 14:205–230CrossRef
Zurück zum Zitat Yazdi SG, Geoghegan P, Docherty P, Jermy M, Khanafer A (2018) A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann Biomed Eng 46:1697–1721CrossRef Yazdi SG, Geoghegan P, Docherty P, Jermy M, Khanafer A (2018) A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann Biomed Eng 46:1697–1721CrossRef
Zurück zum Zitat Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774CrossRef Yousif MY, Holdsworth DW, Poepping TL (2011) A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp Fluids 50:769–774CrossRef
Metadaten
Titel
Fast, flexible and low-cost multiphase blood analogue for biomedical and energy applications
verfasst von
R. Lima
E. J. Vega
A. S. Moita
J. M. Miranda
D. Pinho
A. L. N. Moreira
Publikationsdatum
01.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 11/2020
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-03066-7

Weitere Artikel der Ausgabe 11/2020

Experiments in Fluids 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.