Skip to main content
Erschienen in: Journal of Materials Science 2/2020

26.08.2019 | Chemical routes to materials

Fast growth of nanodiamond in a microwave oven under atmospheric conditions

verfasst von: Soumyendu Roy, Reeti Bajpai, Ronit Popovitz Biro, Hanoch Daniel Wagner

Erschienen in: Journal of Materials Science | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanodiamonds (NDs) were synthesized under atmospheric conditions by heating a precursor powder mixture consisting of naphthalene and a microwave (MW) absorbing material inside an ordinary MW oven for 10 min. Pyrolysis of naphthalene led to the formation of onion-like carbon particles which then converted to NDs after prolonged MW irradiation. Different carbon-based materials like graphite, carbon black, graphene, and carbon nanotubes were used as microwave radiation absorbers that assisted in the dissociation of naphthalene and formation of NDs. ND particles were formed in both isolated as well as aggregated forms. Size of the particles ranged from 2 to 700 nm. Scanning electron microscopy, transmission electron microscopy, electron energy loss spectroscopy, Raman spectroscopy and thermogravimetric analysis were used to characterize the NDs present in the MW-synthesized product. The proposed MW-based ND synthesis technique is simple, fast, inexpensive, energy efficient and could be suitable for industrial scale production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRef Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRef
2.
Zurück zum Zitat Hirai H, Kondo K-I (1991) Modified phases of diamond formed under shock compression and rapid quenching. Science 253:772–774CrossRef Hirai H, Kondo K-I (1991) Modified phases of diamond formed under shock compression and rapid quenching. Science 253:772–774CrossRef
3.
Zurück zum Zitat Vul’ A, Shenderova O (2014) Detonation nanodiamonds: science and applications. Pan Stanford, Boca RatonCrossRef Vul’ A, Shenderova O (2014) Detonation nanodiamonds: science and applications. Pan Stanford, Boca RatonCrossRef
4.
Zurück zum Zitat Boudou J-P, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602CrossRef Boudou J-P, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602CrossRef
5.
Zurück zum Zitat Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382:433–435CrossRef Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382:433–435CrossRef
6.
Zurück zum Zitat Xiao J, Li JL, Liu P, Yang GW (2014) A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion. Nanoscale 6:15098–15106CrossRef Xiao J, Li JL, Liu P, Yang GW (2014) A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion. Nanoscale 6:15098–15106CrossRef
7.
Zurück zum Zitat Kumar A, Ann Lin P, Xue A, Hao B, Khin Yap Y, Sankaran RM (2013) Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat Commun 4:2618CrossRef Kumar A, Ann Lin P, Xue A, Hao B, Khin Yap Y, Sankaran RM (2013) Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat Commun 4:2618CrossRef
8.
Zurück zum Zitat Kamali AR, Fray DJ (2015) Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure. Chem Commun 51:5594–5597CrossRef Kamali AR, Fray DJ (2015) Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure. Chem Commun 51:5594–5597CrossRef
9.
Zurück zum Zitat Hemawan KW, Gou H, Hemley RJ (2015) Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition. Appl Phys Lett 107:181901CrossRef Hemawan KW, Gou H, Hemley RJ (2015) Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition. Appl Phys Lett 107:181901CrossRef
10.
Zurück zum Zitat Zhang W, Fan B, Zhang Y, Fan J (2017) Hydrothermal synthesis of well crystallized C8 and diamond nanocrystals and pH-controlled C8 ↔ diamond phase transition. CrystEngComm 19:1248–1252CrossRef Zhang W, Fan B, Zhang Y, Fan J (2017) Hydrothermal synthesis of well crystallized C8 and diamond nanocrystals and pH-controlled C8 ↔ diamond phase transition. CrystEngComm 19:1248–1252CrossRef
11.
Zurück zum Zitat Liang Q, Yan C-S, Lai J, Meng Y-F, Krasnicki S, Shu H, Mao H-K, Hemley RJ (2014) Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition. Cryst Growth Des 14:3234–3238CrossRef Liang Q, Yan C-S, Lai J, Meng Y-F, Krasnicki S, Shu H, Mao H-K, Hemley RJ (2014) Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition. Cryst Growth Des 14:3234–3238CrossRef
12.
Zurück zum Zitat Bajpai R, Wagner HD (2015) Fast growth of carbon nanotubes using a microwave oven. Carbon 82:327–336CrossRef Bajpai R, Wagner HD (2015) Fast growth of carbon nanotubes using a microwave oven. Carbon 82:327–336CrossRef
13.
Zurück zum Zitat Bajpai R, Rapoport L, Amsalem K, Wagner HD (2016) Rapid growth of onion-like carbon nanospheres in a microwave oven. CrystEngComm 18:230–239CrossRef Bajpai R, Rapoport L, Amsalem K, Wagner HD (2016) Rapid growth of onion-like carbon nanospheres in a microwave oven. CrystEngComm 18:230–239CrossRef
14.
Zurück zum Zitat Liu Z, Wang J, Kushvaha V, Poyraz S, Tippur H, Park S, Kim M, Liu Y, Bar J, Chen H, Zhang X (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47:9912–9914CrossRef Liu Z, Wang J, Kushvaha V, Poyraz S, Tippur H, Park S, Kim M, Liu Y, Bar J, Chen H, Zhang X (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47:9912–9914CrossRef
17.
Zurück zum Zitat Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539CrossRef
18.
Zurück zum Zitat Rafiee J, Rafiee MA, Yu Z-Z, Koratkar N (2010) Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater 22:2151–2154CrossRef Rafiee J, Rafiee MA, Yu Z-Z, Koratkar N (2010) Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater 22:2151–2154CrossRef
19.
Zurück zum Zitat Haubner R, Lux B (2002) Deposition of ballas diamond and nano-crystalline diamond. Int J Refract Met Hard Mater 20:93–100CrossRef Haubner R, Lux B (2002) Deposition of ballas diamond and nano-crystalline diamond. Int J Refract Met Hard Mater 20:93–100CrossRef
20.
Zurück zum Zitat Shimada Y, Machi Y (1993) Selective growth of diamond using an iron catalyst. J Appl Phys 74:7228–7234CrossRef Shimada Y, Machi Y (1993) Selective growth of diamond using an iron catalyst. J Appl Phys 74:7228–7234CrossRef
21.
Zurück zum Zitat Liu X, Jia X, Fang C, Ma H-A (2016) Diamond crystallization and growth in N–H enriched environment under HPHT conditions. CrystEngComm 18:8506–8515CrossRef Liu X, Jia X, Fang C, Ma H-A (2016) Diamond crystallization and growth in N–H enriched environment under HPHT conditions. CrystEngComm 18:8506–8515CrossRef
22.
Zurück zum Zitat Badzian AR, Klokocki A (1981) On the catalytic growth of synthetic diamonds. J Cryst Growth 52:843–847CrossRef Badzian AR, Klokocki A (1981) On the catalytic growth of synthetic diamonds. J Cryst Growth 52:843–847CrossRef
23.
Zurück zum Zitat Terranova ML, Manno D, Rossi M, Serra A, Filippo E, Orlanducci S, Tamburri E (2009) Self-assembly of n-diamond nanocrystals into supercrystals. Cryst Growth Des 9:1245–1249CrossRef Terranova ML, Manno D, Rossi M, Serra A, Filippo E, Orlanducci S, Tamburri E (2009) Self-assembly of n-diamond nanocrystals into supercrystals. Cryst Growth Des 9:1245–1249CrossRef
24.
Zurück zum Zitat Yamada K, Sawaoka AB (1994) Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism. Carbon 32:665–673CrossRef Yamada K, Sawaoka AB (1994) Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism. Carbon 32:665–673CrossRef
25.
Zurück zum Zitat Wen B, Zhao JJ, Li TJ (2007) Synthesis and crystal structure of n-diamond. Int Mater Rev 52:131–151CrossRef Wen B, Zhao JJ, Li TJ (2007) Synthesis and crystal structure of n-diamond. Int Mater Rev 52:131–151CrossRef
26.
Zurück zum Zitat Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253CrossRef Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y (2014) Nanotwinned diamond with unprecedented hardness and stability. Nature 510:250–253CrossRef
27.
Zurück zum Zitat Burkhard G, Dan K, Tanabe Y, Sawaoka AB, Yamada K (1994) Formation of cubic carbon by dynamic shock compression of a diamond/amorphous carbon powder mixture. Jpn J Appl Phys 33:5875–5885CrossRef Burkhard G, Dan K, Tanabe Y, Sawaoka AB, Yamada K (1994) Formation of cubic carbon by dynamic shock compression of a diamond/amorphous carbon powder mixture. Jpn J Appl Phys 33:5875–5885CrossRef
28.
Zurück zum Zitat Bundy FP, Kasper JS (1967) Hexagonal diamond—a new form of carbon. J Chem Phys 46:3437–3446CrossRef Bundy FP, Kasper JS (1967) Hexagonal diamond—a new form of carbon. J Chem Phys 46:3437–3446CrossRef
29.
Zurück zum Zitat Ohfuji H, Kuroki K (2009) Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure. J Mineral Petrol Sci 104:307–312CrossRef Ohfuji H, Kuroki K (2009) Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure. J Mineral Petrol Sci 104:307–312CrossRef
30.
Zurück zum Zitat Mykhaylyk OO, Solonin YM, Batchelder DN, Brydson R (2005) Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J Appl Phys 97:074302CrossRef Mykhaylyk OO, Solonin YM, Batchelder DN, Brydson R (2005) Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J Appl Phys 97:074302CrossRef
31.
Zurück zum Zitat Varshney D, Sumant AV, Resto O, Mendoza F, Quintero KP, Ahmadi M, Weiner BR, Morell G (2013) Single-step route to hierarchical flower-like carbon nanotube clusters decorated with ultrananocrystalline diamond. Carbon 63:253–262CrossRef Varshney D, Sumant AV, Resto O, Mendoza F, Quintero KP, Ahmadi M, Weiner BR, Morell G (2013) Single-step route to hierarchical flower-like carbon nanotube clusters decorated with ultrananocrystalline diamond. Carbon 63:253–262CrossRef
32.
Zurück zum Zitat Müller JO, Su DS, Wild U, Schlögl R (2007) Bulk and surface structural investigations of diesel engine soot and carbon black. Phys Chem Chem Phys 9:4018–4025CrossRef Müller JO, Su DS, Wild U, Schlögl R (2007) Bulk and surface structural investigations of diesel engine soot and carbon black. Phys Chem Chem Phys 9:4018–4025CrossRef
33.
Zurück zum Zitat Yan C-S, Vohra YK, Mao H-K, Hemley RJ (2002) Very high growth rate chemical vapor deposition of single-crystal diamond. PNAS 99:12523–12525CrossRef Yan C-S, Vohra YK, Mao H-K, Hemley RJ (2002) Very high growth rate chemical vapor deposition of single-crystal diamond. PNAS 99:12523–12525CrossRef
34.
Zurück zum Zitat Korepanov VI, Hamaguchi H-O, Osawa E, Ermolenkov V, Lednev IK, Etzold BJM, Levinson O, Zousman B, Epperla CP, Chang H-C (2017) Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121:322–329CrossRef Korepanov VI, Hamaguchi H-O, Osawa E, Ermolenkov V, Lednev IK, Etzold BJM, Levinson O, Zousman B, Epperla CP, Chang H-C (2017) Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121:322–329CrossRef
35.
Zurück zum Zitat Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2:615–619CrossRef Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2:615–619CrossRef
36.
Zurück zum Zitat Zhao F, Vrajitoarea A, Jiang Q, Han X, Chaudhary A, Welch JO, Jackman RB (2015) Graphene-nanodiamond heterostructures and their application to high current devices. Sci Rep 5:13771CrossRef Zhao F, Vrajitoarea A, Jiang Q, Han X, Chaudhary A, Welch JO, Jackman RB (2015) Graphene-nanodiamond heterostructures and their application to high current devices. Sci Rep 5:13771CrossRef
37.
Zurück zum Zitat Fedoseeva YV, Bulusheva LG, Okotrub AV, Kanygin MA, Gorodetskiy DV, Asanov IP, Vyalikh DV, Puzyr AP, Bondar VS (2015) Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Sci Rep 5:9379CrossRef Fedoseeva YV, Bulusheva LG, Okotrub AV, Kanygin MA, Gorodetskiy DV, Asanov IP, Vyalikh DV, Puzyr AP, Bondar VS (2015) Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array. Sci Rep 5:9379CrossRef
38.
Zurück zum Zitat Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141CrossRef Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141CrossRef
39.
Metadaten
Titel
Fast growth of nanodiamond in a microwave oven under atmospheric conditions
verfasst von
Soumyendu Roy
Reeti Bajpai
Ronit Popovitz Biro
Hanoch Daniel Wagner
Publikationsdatum
26.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03936-4

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Science 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.