Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

13.10.2017

Fast Iterative Adaptive Multi-quadric Radial Basis Function Method for Edges Detection of Piecewise Functions—I: Uniform Mesh

verfasst von: Wai Sun Don, Bao-Shan Wang, Zhen Gao

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Jung et al. (Appl Numer Math 61:77–91, 2011), an iterative adaptive multi-quadric radial basis function (IAMQ-RBF) method has been developed for edges detection of the piecewise analytical functions. For a uniformly spaced mesh, the perturbed Toeplitz matrices, which are modified by those columns where the shape parameters are reset to zero due to the appearance of edges at the corresponding locations, are created. Its inverse must be recomputed at each iterative step, which incurs a heavy \(O(n^3)\) computational cost. To overcome this issue of efficiency, we develop a fast direct solver (IAMQ-RBF-Fast) to reformulate the perturbed Toeplitz system into two Toeplitz systems and a small linear system via the Sherman–Morrison–Woodbury formula. The \(O(n^2)\) Levinson–Durbin recursive algorithm that employed Yule–Walker algorithm is used to find the inverse of the Toeplitz matrix fast. Several classical benchmark examples show that the IAMQ-RBF-Fast based edges detection method can be at least three times faster than the original IAMQ-RBF based one. And it can capture an edge with fewer grid points than the multi-resolution analysis (Harten in J Comput Phys 49:357–393, 1983) and just as good as if not better than the L1PA method (Denker and Gelb in SIAM J Sci Comput 39(2):A559–A592, 2017). Preliminary results in the density solution of the 1D Mach 3 extended shock–density wave interaction problem solved by the hybrid compact-WENO finite difference scheme with the IAMQ-RBF-Fast based shocks detection method demonstrating an excellent performance in term of speed and accuracy, are also shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Available for download from USC Signal and Image Processing Institute Data base [40].
 
Literatur
1.
Zurück zum Zitat Archibald, R., Gelb, A., Platte, R.B.: Image reconstruction from undersampled Fourier data using the polynomial annihilation transform. J. Sci. Comput. 67, 432–452 (2016)MathSciNetCrossRefMATH Archibald, R., Gelb, A., Platte, R.B.: Image reconstruction from undersampled Fourier data using the polynomial annihilation transform. J. Sci. Comput. 67, 432–452 (2016)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3101–3211 (2008)MathSciNetCrossRefMATH Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3101–3211 (2008)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002)MathSciNetCrossRefMATH Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002)MathSciNetCrossRefMATH
4.
5.
Zurück zum Zitat Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRefMATH Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)CrossRefMATH
6.
Zurück zum Zitat Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH, pp. 67–76 (2001) Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans, T.: Reconstruction and representation of 3D objects with radial basis functions. In: SIGGRAPH, pp. 67–76 (2001)
7.
Zurück zum Zitat Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)MathSciNetCrossRefMATH Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247–1266 (2007)MathSciNetCrossRefMATH Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A superfast algorithm for Toeplitz systems of linear equations. SIAM J. Matrix Anal. Appl. 29(4), 1247–1266 (2007)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Chao, J., Haselbacher, A., Balachandar, S.: A massively parallel multi-block hybrid compact-WENO scheme for compressible flows. J. Comput. Phys. 228(19), 7473–7491 (2009)MathSciNetCrossRefMATH Chao, J., Haselbacher, A., Balachandar, S.: A massively parallel multi-block hybrid compact-WENO scheme for compressible flows. J. Comput. Phys. 228(19), 7473–7491 (2009)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204(2), 209–218 (2007)MathSciNetCrossRefMATH Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204(2), 209–218 (2007)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Costa, B., Don, W.S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. J. Comput. Phys. 224, 970–991 (2007)MathSciNetCrossRefMATH Costa, B., Don, W.S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. J. Comput. Phys. 224, 970–991 (2007)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
13.
Zurück zum Zitat Denker, D., Gelb, A.: Edge detection of piecewise smooth functions from undersampled Fourier data using variance signatures. SIAM J. Sci. Comput. 39(2), A559–A592 (2017)MathSciNetCrossRefMATH Denker, D., Gelb, A.: Edge detection of piecewise smooth functions from undersampled Fourier data using variance signatures. SIAM J. Sci. Comput. 39(2), A559–A592 (2017)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2), 691–711 (2016)MathSciNetCrossRefMATH Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2), 691–711 (2016)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)MathSciNetCrossRefMATH Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–83 (1988)MathSciNetMATH Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–83 (1988)MathSciNetMATH
17.
Zurück zum Zitat Goldsten, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)MathSciNetCrossRef Goldsten, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat Gao, Z., Don, W.S.: Mapped hybrid central-WENO finite difference scheme for detonation waves simulations. J. Sci. Comput. 55, 351–371 (2012)MathSciNetCrossRefMATH Gao, Z., Don, W.S.: Mapped hybrid central-WENO finite difference scheme for detonation waves simulations. J. Sci. Comput. 55, 351–371 (2012)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64, 1557–1576 (1995)MathSciNetCrossRefMATH Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian elimination with partial pivoting for matrices with displacement structure. Math. Comput. 64, 1557–1576 (1995)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Gu, M.: Stable and efficient algorithms for structured systems of linear equations. SIAM J. Matrix Anal. Appl. 19, 279–306 (1998)MathSciNetCrossRefMATH Gu, M.: Stable and efficient algorithms for structured systems of linear equations. SIAM J. Matrix Anal. Appl. 19, 279–306 (1998)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Bojanczyk, A., Cybenko, G. (eds.) Linear Algebra for Signal Processing (The IMA Volumes in Mathematics and Its Applications), vol. 69, pp. 63–81. Springer, New York (1995) Heinig, G.: Inversion of generalized Cauchy matrices and other classes of structured matrices. In: Bojanczyk, A., Cybenko, G. (eds.) Linear Algebra for Signal Processing (The IMA Volumes in Mathematics and Its Applications), vol. 69, pp. 63–81. Springer, New York (1995)
24.
Zurück zum Zitat Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32(1), 13–25 (2003)MathSciNetCrossRefMATH Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32(1), 13–25 (2003)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Jung, J.-H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)MathSciNetCrossRefMATH Jung, J.-H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Jung, J.-H., Durante, V.: An iterative multiquadric radial basis function method for the detection of local jump discontinuities. Appl. Numer. Math. 59, 1449–1446 (2009)MathSciNetCrossRefMATH Jung, J.-H., Durante, V.: An iterative multiquadric radial basis function method for the detection of local jump discontinuities. Appl. Numer. Math. 59, 1449–1446 (2009)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Jung, J.-H., Gottlieb, S., Kim, S.O.: Iterative adaptive RBF methods for detection of edges in two-dimensional functions. Appl. Numer. Math. 61, 77–91 (2011)MathSciNetCrossRefMATH Jung, J.-H., Gottlieb, S., Kim, S.O.: Iterative adaptive RBF methods for detection of edges in two-dimensional functions. Appl. Numer. Math. 61, 77–91 (2011)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Kansa, E.J.: Muliquadrics—a scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)MathSciNetCrossRefMATH Kansa, E.J.: Muliquadrics—a scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39, 123–137 (2000)MathSciNetCrossRefMATH Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39, 123–137 (2000)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Kansa, E.J.: Exact explicit time integration of hyperbolic partial differential equations with mesh free radial basis functions. Eng. Anal. Bound. Elem. 31, 577–585 (2007)CrossRefMATH Kansa, E.J.: Exact explicit time integration of hyperbolic partial differential equations with mesh free radial basis functions. Eng. Anal. Bound. Elem. 31, 577–585 (2007)CrossRefMATH
31.
Zurück zum Zitat Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRefMATH Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)MathSciNetCrossRefMATH Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators. Comput. Math. Appl. 24, 121–138 (1992)MathSciNetCrossRefMATH Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators. Comput. Math. Appl. 24, 121–138 (1992)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70(1), 94–114 (1992)MathSciNetCrossRefMATH Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70(1), 94–114 (1992)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)MathSciNetCrossRefMATH Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)MathSciNetCrossRefMATH Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)MathSciNetCrossRefMATH Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Shen, Y.Q., Yang, G.W.: Hybrid finite compact-WENO schemes for shock calculation. Int. J. Numer. Methods Fluids 53(4), 531–560 (2007)MathSciNetCrossRefMATH Shen, Y.Q., Yang, G.W.: Hybrid finite compact-WENO schemes for shock calculation. Int. J. Numer. Methods Fluids 53(4), 531–560 (2007)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Vasilyev, O., Lund, T., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146(1), 82–104 (1998)MathSciNetCrossRefMATH Vasilyev, O., Lund, T., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146(1), 82–104 (1998)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Xi, Y., Xia, J., Cauley, S., Balakrishnan, V.: Superfast and stable structured solvers for Toeplitz least squares via randomized sampling. SIAM J. Matrix Anal. Appl. 35(1), 44–72 (2014)MathSciNetCrossRefMATH Xi, Y., Xia, J., Cauley, S., Balakrishnan, V.: Superfast and stable structured solvers for Toeplitz least squares via randomized sampling. SIAM J. Matrix Anal. Appl. 35(1), 44–72 (2014)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Xia, J., Xi, Y., Gu, M.: A superfast structured solver for Toeplitz linear systems via randomized sampling. SIAM J. Matrix Anal. Appl. 33(3), 837–858 (2012)MathSciNetCrossRefMATH Xia, J., Xi, Y., Gu, M.: A superfast structured solver for Toeplitz linear systems via randomized sampling. SIAM J. Matrix Anal. Appl. 33(3), 837–858 (2012)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Yee, P.V., Haykin, S.: Regularized Radial Basis Function Networks: Theory and Applications. Wiley, New York (2001) Yee, P.V., Haykin, S.: Regularized Radial Basis Function Networks: Theory and Applications. Wiley, New York (2001)
45.
Zurück zum Zitat Yoon, J.: Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J. Math. Anal. 33, 946–958 (2001)MathSciNetCrossRefMATH Yoon, J.: Spectral approximation orders of radial basis function interpolation on the Sobolev space. SIAM J. Math. Anal. 33, 946–958 (2001)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Zhou, X., Hon, Y.C., Li, J.: Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44, 241–255 (2003)MathSciNetCrossRefMATH Zhou, X., Hon, Y.C., Li, J.: Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44, 241–255 (2003)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Zhu, Q.Q., Gao, Z., Don, W.S., Lv, X.Q.: Well-balanced hybrid compact-WENO schemes for shallow water equations. Appl. Numer. Math. 112, 65–78 (2017)MathSciNetCrossRefMATH Zhu, Q.Q., Gao, Z., Don, W.S., Lv, X.Q.: Well-balanced hybrid compact-WENO schemes for shallow water equations. Appl. Numer. Math. 112, 65–78 (2017)MathSciNetCrossRefMATH
Metadaten
Titel
Fast Iterative Adaptive Multi-quadric Radial Basis Function Method for Edges Detection of Piecewise Functions—I: Uniform Mesh
verfasst von
Wai Sun Don
Bao-Shan Wang
Zhen Gao
Publikationsdatum
13.10.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0572-y

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe