Skip to main content
Erschienen in: Wireless Networks 6/2020

18.03.2020

Fast node cardinality estimation and cognitive MAC protocol design for heterogeneous machine-to-machine networks

verfasst von: Sachin Kadam, Chaitanya S. Raut, Aman Deep Meena, Gaurav S. Kasbekar

Erschienen in: Wireless Networks | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We design two estimation schemes, Method I and Method II, for rapidly obtaining separate estimates of the number of active nodes of each traffic type in a heterogeneous machine-to-machine (M2M) network with T types of nodes (e.g., those that send emergency, periodic, normal type data etc.), where \(T\ge 2\) is an arbitrary integer. Method I is a simple scheme, and Method II is more sophisticated and outperforms Method I. Also, we design a medium access control (MAC) protocol that supports multi-channel operation for a heterogeneous M2M network with T types of nodes, operating as a secondary network using Cognitive Radio technology. In every time frame, our Cognitive MAC protocol uses the proposed estimation schemes to rapidly estimate the active node cardinality of each type, and uses these estimates to find the optimal contention probabilities to be used. We compute a closed form expression for the expected number of time slots required by Method I to execute, and a simple upper bound on it. Also, we analytically obtain expressions for the expected number of successful contentions per frame and the expected amount of energy consumed. Finally, we evaluate the performances of our proposed estimation schemes and Cognitive MAC protocol using simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For example, some M2M nodes need to transmit data (e.g., smart meter readings) periodically, some need to send emergency or alarm messages (e.g., in healthcare and security applications), some need to transmit normal data traffic and some need to reliably transmit data packets (e.g., in remote payment gateway systems) [3, 5, 6].
 
2
Specifically, Wi-Fi has high power consumption, due to which it is not suitable for battery operated M2M devices, and Bluetooth has high latency when the number of devices is large, as is the case in M2M networks [7]. ZigBee operates on unlicensed bands and is prone to interference from Wi-Fi networks and other equipment (e.g., microwave ovens) that use those bands [4, 7]. Due to the high demand for H2H communication services such as voice, video, emails etc, only a limited amount of radio spectrum is available with cellular operators to support M2M communications [4].
 
3
Note that for two nodes to be able to exchange data, both must have their wireless transceiver tuned to a common channel at a time.
 
4
Note that [19] is a technical report corresponding to [18], and it is available online.
 
5
Note that this would be the case in M2M networks in which the nodes are, e.g., sensors that occasionally transmit measurements or nodes that transmit alarms, emergency alerts and other infrequent messages.
 
6
A given node randomly chooses a preamble from a pool of preambles and transmits it on the random access channel (RACH).
 
7
|A| denotes the cardinality of set A.
 
8
If all the bits of the ID are 1, then its hash value is defined to be l.
 
9
See Lemma 4.1 and equation (6) on page 1446 of [21], which state that \({\hat{n}} = \frac{1}{\phi } 2^{\rho }\). The value 1.2897 is obtained by inverting \(\phi = 0.775351\), i.e., \(1/\phi = 1.2897\). In the computation of \({\hat{n}}\), \(1/\phi\) is used as a correction factor and it is introduced to improve the accuracy of the estimation [21].
 
10
\(\lceil x\rceil =\) The smallest integer greater than or equal to x.
 
11
Note that the block results (E, \(\alpha\)), (\(\alpha\), E), (\(\alpha\), \(\beta\)) and (\(\beta\), \(\alpha\)) cannot occur under the above protocol. The reason is as follows. Recall that active Type 1 nodes transmit symbol \(\alpha\) in both the slots, and Type 2 and Type 3 nodes do not use symbol \(\alpha\). So whenever one (respectively, two or more) node (respectively, nodes) of Type 1 transmits (respectively, transmit), then only the following results are possible: (\(\alpha\), \(\alpha\)), (\(\alpha\), C), and (C, \(\alpha\)) (respectively, (C, C)). Hence, whenever symbol \(\alpha\) is observed in one slot, the result of the other slot should be either \(\alpha\) or C.
 
12
For example: (i) If the outcome is (\(\alpha , \alpha , \ldots , \alpha\)), then it implies that exactly one node from \({\mathcal {N}}_1\) has transmitted and no nodes from \({\mathcal {N}}_2, \ldots , {\mathcal {N}}_T\) have transmitted. (ii) If the outcome is (\(\beta , \beta , \ldots , \beta\)), then it implies that exactly one node from each of \({\mathcal {N}}_2, \ldots , {\mathcal {N}}_T\) have transmitted and no node from \({\mathcal {N}}_1\) has transmitted. (iii) If the outcome is (\(\alpha , C, C, \ldots , C, C, \alpha\)), then it implies that exactly one node from \({\mathcal {N}}_1\), at least one node from \({\mathcal {N}}_3, {\mathcal {N}}_4, \ldots , {\mathcal {N}}_{T-2}, {\mathcal {N}}_{T-1}\) have transmitted and no node from \({\mathcal {N}}_2\) and \({\mathcal {N}}_T\) have transmitted. (iv) If the outcome is (\(\beta , C, E, \beta , E, E, \ldots , E\)), then it implies that exactly one node from each of \({\mathcal {N}}_2\) and \({\mathcal {N}}_5\), at least two nodes from \({\mathcal {N}}_3\) have transmitted, and no nodes from any of the remaining types have transmitted.
 
13
For example, \(S_W\) may be 5 [22].
 
14
For each \(j \in \{1, \dots , |C_{II}|\}\), the \(((j-1)(T-1)+1)^{th}\), …, \((j(T-1))^{th}\) slots of the third phase are used by nodes from \({\mathcal {N}}_2, \ldots , {\mathcal {N}}_T\) respectively. Specifically, for each \(j = 1, \dots , |C_{II}|\), in slot \(((j-1)(T-1)+1)\) (respectively, \(((j-1)(T-1)+2)\), …, \((j(T-1)\))) of the third phase, the active nodes from \({\mathcal {N}}_2\) (respectively, \({\mathcal {N}}_3\), …, \({\mathcal {N}}_T\)) whose hash value equals the first phase block number, say i, of the \(j^{th}\) element of \(C_{II}\) transmit. If slot \(((j-1)(T-1)+1)\) (respectively, \(((j-1)(T-1)+2)\), …, \((j(T-1)\))) is empty, then \(B(2,i) = 0\) (respectively, \(B(3,i) = 0\), …, \(B(T,i) = 0\)), else \(B(2,i) = 1\) (respectively, \(B(3, i) = 1\), …, \(B(T, i) = 1\)). Also, since \(B(1,i) = 1\), the above ambiguity is resolved in the third phase.
 
15
For example, each active node of Type 1 and hash value i transmits symbol \(\alpha\) in slot 1 and does not transmit in slots \(2, \ldots , \eta _T\) of block \(B_i\). Each active node of Type 2 and hash value i transmits symbol \(\alpha\) in slots 1 and 2 and does not transmit in slots \(3, \ldots , \eta _T\) of block \(B_i\). For T even, each active node of Type T and hash value i transmits symbol \(\beta\) in slots \(1, \ldots , \eta _T\) of block \(B_i\). For T odd, each active node of Type T and hash value i transmits symbol \(\beta\) in slot 1, symbol \(\alpha\) in slot \(\eta _T\), and does not transmit in slots \(2, \ldots , \eta _T -1\) of block \(B_i\).
 
16
For example: Let us consider the case \(T=4\). From Fig. 4, we get that the symbol combinations used are \((\alpha , 0)\), \((\alpha , \alpha )\), \((0, \beta )\), and \((\beta , \beta )\). If the slot results in the first phase of block \(B_i\) are (\(\alpha , \beta\)), it implies that exactly one node each from Type 1 (hence, \(B(1,i)=1\)), Type 3 (hence, \(B(3,i)=1\)), and no nodes from Type 2 (hence, \(B(2,i)=0\)), Type 4 (hence, \(B(4,i)=0\)) have transmitted.
 
17
We assume that the probabilities \(z_i\) are known to the base station; for example, they can be estimated using past observations of PU occupancies on different channels.
 
18
Recall that for \(T = 2\) and \(T = 3\), the same estimation scheme is used under Methods I and II described in Sect. 4. For \(T \ge 4\), either Method I or Method II can be used in the EW.
 
19
Note that although the value of \(R_s\) is not known in advance, after the first (respectively, second) phase of the estimation scheme, the BS can find the value of \(|C_I|\) (respectively, \(|C_{II}|\)) (see Sects. 4.1.1 and 4.1.2). So the information required to reserve \(R_s\) slots is available with the network.
 
20
\(\lfloor x\rfloor =\) The largest integer less than or equal to x.
 
21
All our simulations were done using the MATLAB software.
 
22
Let \(n_b\) (respectively, \({\hat{n}}_b\)) be the number of active nodes (respectively, estimate of the number of active nodes) of Type b. Let \(\epsilon\) and \(\delta\) denote the desired relative estimation error and estimation scheme failure probability respectively [25]. For the given accuracy requirements (\(\epsilon , \delta\)), under each estimation scheme, estimates \({\hat{n}}_b\) are obtained by independently running the scheme multiple times and averaging the results; the number of runs is selected such that \(Pr(|{\hat{n}}_b - n_b| \le \epsilon n_b) \ge 1 - \delta\). In our simulations, the parameter values \(\epsilon = 0.05\) and \(\delta = 0.01\) are used.
 
23
Note that for \(T = 2\) and \(T= 3\), we use the same scheme in both the methods. Hence, \(q^I_{threshold}= q^{II}_{threshold}\) for \(T = 2\) and \(T= 3\). Also, Fig. 10a shows that for odd values of \(T \ge 5\), \(q^{II}_{threshold}\) is higher than \(q^{II}_{threshold}\) for \(T-1\) (which is even). Intuitively, this is because in Method II, for even values of T, \((T/2)t_T\) slots are used in the first phase, whereas for odd values of T, only \(((T-1)/2)t_T\) slots are used in the first phase.
 
24
Note that the ideal protocol is not practically implementable and is considered only for comparison with the proposed protocol.
 
25
\(\left( \frac{1}{4}\right) ^{l_{n_r} + k} \le \left( \frac{1}{4}\right) ^{\log _2n_r} \le \left( \frac{1}{4}\right) ^k = \left( \frac{1}{4^k n_r^2}\right)\) for \(k = 0, 1, \dots , s -2\).
 
26
\(\left( \frac{1}{4^{T-1}}\right) ^{l_{n_r} + k} \le \left( \frac{1}{4^{T-1}}\right) ^{\log _2n_r} \left( \frac{1}{4^{T-1}}\right) ^k\) for \(k = 0, 1, 2, \dots , s-2\).
 
27
\(\left( \frac{1}{2^{T}}\right) ^{l_{n_r} + k} \le \left( \frac{1}{2^{T}}\right) ^{\log _2n_r} \left( \frac{1}{2^T}\right) ^k\) for \(k = 0, 1, 2, \dots , s-2\).
 
28
For example: If Slot 1 results in \(\alpha\) and Slot 2 results in \(\beta\), then the BS infers that in block \(B_i\), exactly one node each of Type 1 (hence, \(B(1,i) = 1\)) and Type 3 (hence, \(B(3,i) = 1\)) have transmitted, and no nodes of Type 2 (hence, \(B(2,i) = 0\)) and Type 4 (hence, \(B(4,i) = 0\)) have transmitted. Similarly, if Slot 1 results in E and Slot 2 results in \(\beta\), then the BS infers that in block \(B_i\), exactly one node of Type 3 (hence, \(B(3,i) = 1\)) has transmitted, and no nodes of Type 1 (hence, \(B(1,i) = 0\)), Type 2 (hence, \(B(2,i) = 0\)), and Type 4 (hence, \(B(4,i) = 0\)) have transmitted.
 
29
For example: If Slot 1 results in C and Slot 2 results in \(\alpha\), then the BS infers that at least one node of Type 1 and exactly one node of Type 2 are active, and all Type 3 and Type 4 nodes are inactive. Similarly, if Slot 1 results in C and Slot 2 results in \(\beta\), then the BS infers that at least one node of Type 1 is active, no node of Type 2 is active, and exactly one node of Type 3 or Type 4 is active.
 
30
For example– at least two nodes of Type 2 (second row) or exactly one node each of Types 2 and 4 (fourth row) or at least two nodes of each of Types 1 and 3 and none of Types 2 and 4 (last row).
 
31
For example (i) if the two bits in the \((2j-1)^{th}\) and \((2j)^{th}\) positions of the concatenated bit string are 00, then it implies that the activity or inactivity of nodes of all the types is known with certainty to the BS for the \(j^{th}\) block; hence all these nodes will be in silent mode during the second phase, (ii) if the two bits in the \((2j-1)^{th}\) and \((2j)^{th}\) positions of the concatenated bit string are 10, then it implies that ambiguity exists regarding the activity or inactivity of nodes of Types 1 and 2 and the activity or inactivity of nodes of Types 3 and 4 has been inferred with certainty for the \(j^{th}\) block. Hence, during the second phase, active nodes of Types 1 and 2 corresponding to the \(j^{th}\) block will participate to resolve the ambiguity and nodes of Types 3 and 4 will be in silent mode.
 
Literatur
1.
Zurück zum Zitat Kadam, S., Raut, C. S., & Kasbekar, G. S. (2017). Fast node cardinality estimation and cognitive mac protocol design for heterogeneous M2M networks. In Proceedings of IEEE GLOBECOM (pp. 1–7). Kadam, S., Raut, C. S., & Kasbekar, G. S. (2017). Fast node cardinality estimation and cognitive mac protocol design for heterogeneous M2M networks. In Proceedings of IEEE GLOBECOM (pp. 1–7).
2.
Zurück zum Zitat Kadam, S., Raut, C. S., Meena, A., & Kasbekar, G. S. (2018). Fast node cardinality estimation and cognitive MAC protocol design for heterogeneous machine-to-machine networks. Technical Report. arXiv:1812.03902.pdf. Kadam, S., Raut, C. S., Meena, A., & Kasbekar, G. S. (2018). Fast node cardinality estimation and cognitive MAC protocol design for heterogeneous machine-to-machine networks. Technical Report. arXiv:​1812.​03902.​pdf.
3.
Zurück zum Zitat Wu, G., Talwar, S., Johnsson, K., Himayat, N., & Johnson, K. D. (2011). M2M: From Mobile to Embedded Internet. IEEE Communications Magazine, 49(4), 36–43.CrossRef Wu, G., Talwar, S., Johnsson, K., Himayat, N., & Johnson, K. D. (2011). M2M: From Mobile to Embedded Internet. IEEE Communications Magazine, 49(4), 36–43.CrossRef
4.
Zurück zum Zitat Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. IEEE Network, 26(3), 6–13.CrossRef Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. IEEE Network, 26(3), 6–13.CrossRef
5.
Zurück zum Zitat Rajandekar, A., & Sikdar, B. (2015). A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet Things Journal, 2(2), 175–186.CrossRef Rajandekar, A., & Sikdar, B. (2015). A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet Things Journal, 2(2), 175–186.CrossRef
6.
Zurück zum Zitat 3GPP. (2014). Service Requirements for Machine-Type Communications. TS 22.368 V13.1.0. 3GPP. (2014). Service Requirements for Machine-Type Communications. TS 22.368 V13.1.0.
7.
Zurück zum Zitat Aijaz, A., & Aghvami, A.-H. (2015). PRMA-based cognitive machine-to-machine communications in smart grid networks. IEEE Transactions on Vehicular Technology, 64(8), 3608–3623.CrossRef Aijaz, A., & Aghvami, A.-H. (2015). PRMA-based cognitive machine-to-machine communications in smart grid networks. IEEE Transactions on Vehicular Technology, 64(8), 3608–3623.CrossRef
8.
Zurück zum Zitat Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
9.
Zurück zum Zitat De Domenico, A., Strinati, E. C., & Di Benedetto, M.-G. (2012). A survey on MAC strategies for cognitive radio networks. IEEE Communications Surveys and Tutorials, 14(1), 21–44.CrossRef De Domenico, A., Strinati, E. C., & Di Benedetto, M.-G. (2012). A survey on MAC strategies for cognitive radio networks. IEEE Communications Surveys and Tutorials, 14(1), 21–44.CrossRef
10.
Zurück zum Zitat So, J., & Vaidya, N. H. (2004). Multi-Channel MAC for Ad Hoc networks: Handling multi-channel hidden terminals using a single transceiver. In Proceedings of ACM MobiHoc, pp. 222–233. So, J., & Vaidya, N. H. (2004). Multi-Channel MAC for Ad Hoc networks: Handling multi-channel hidden terminals using a single transceiver. In Proceedings of ACM MobiHoc, pp. 222–233.
11.
Zurück zum Zitat Cordeiro, C., & Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In Proceedings of DySPAN (pp. 147–157). Cordeiro, C., & Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In Proceedings of DySPAN (pp. 147–157).
12.
Zurück zum Zitat Bertsekas, D. P, & Gallager, R. G. (1992).Data Networks. PHI, 2nd ed. Bertsekas, D. P, & Gallager, R. G. (1992).Data Networks. PHI, 2nd ed.
13.
Zurück zum Zitat Duan, S., Shah-Mansouri, V., Wang, Z., & Wong, V. W. S. (2016). D-ACB: adaptive congestion control algorithm for bursty M2M traffic in LTE networks. IEEE Transactions on Vehicular Technology, 65(12), 9847–9861.CrossRef Duan, S., Shah-Mansouri, V., Wang, Z., & Wong, V. W. S. (2016). D-ACB: adaptive congestion control algorithm for bursty M2M traffic in LTE networks. IEEE Transactions on Vehicular Technology, 65(12), 9847–9861.CrossRef
14.
Zurück zum Zitat Ashrafuzzaman, K., & Fapojuwo, A. O. (2018). Efficient and agile carrier sense multiple access in capillary machine-to-machine communication networks. IEEE Access, 6, 4916–4932.CrossRef Ashrafuzzaman, K., & Fapojuwo, A. O. (2018). Efficient and agile carrier sense multiple access in capillary machine-to-machine communication networks. IEEE Access, 6, 4916–4932.CrossRef
15.
Zurück zum Zitat Tavana, M., Rahmati, A., & Shah-Mansouri, V. (2018). Congestion control with adaptive access class barring for LTE M2M overload using Kalman filters. Computer Networks, 141, 222–233.CrossRef Tavana, M., Rahmati, A., & Shah-Mansouri, V. (2018). Congestion control with adaptive access class barring for LTE M2M overload using Kalman filters. Computer Networks, 141, 222–233.CrossRef
16.
Zurück zum Zitat El Tanab, M., & Hamouda, W. (2019). Machine-to-machine communications with massive access: congestion control. IEEE Internet Things Journals, 6(2), 3545–3557.CrossRef El Tanab, M., & Hamouda, W. (2019). Machine-to-machine communications with massive access: congestion control. IEEE Internet Things Journals, 6(2), 3545–3557.CrossRef
17.
Zurück zum Zitat Liu, J., Zhou, W., & Song, L. (2017). A novel congestion reduction scheme for massive machine-to-machine communication. IEEE Access, 5, 18765–18777.CrossRef Liu, J., Zhou, W., & Song, L. (2017). A novel congestion reduction scheme for massive machine-to-machine communication. IEEE Access, 5, 18765–18777.CrossRef
18.
Zurück zum Zitat S. Vivek Y., Prasad, P. H., Kumar, R., Kadam, S., & Kasbekar, G. S. (2019). Rapid node cardinality estimation in heterogeneous machine-to-machine networks. In Proceedings of IEEE VTC D’IoT, pp. 1–7, Spring. S. Vivek Y., Prasad, P. H., Kumar, R., Kadam, S., & Kasbekar, G. S. (2019). Rapid node cardinality estimation in heterogeneous machine-to-machine networks. In Proceedings of IEEE VTC D’IoT, pp. 1–7, Spring.
20.
Zurück zum Zitat Kadam, S., S. Vivek Y., Prasad, P. H., Kumar, R., & Kasbekar, G. S. (2019). Rapid node cardinality estimation in heterogeneous machine-to-machine networks. submitted to a journal, under review. Corr. Technical Report (2019). arXiv:1907.04133.pdf. Kadam, S., S. Vivek Y., Prasad, P. H., Kumar, R., & Kasbekar, G. S. (2019). Rapid node cardinality estimation in heterogeneous machine-to-machine networks. submitted to a journal, under review. Corr. Technical Report (2019). arXiv:​1907.​04133.​pdf.
21.
Zurück zum Zitat Qian, C., Ngan, H., Liu, Y., & Ni, L. M. (2011). Cardinality estimation for large-scale RFID systems. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1441–1454.CrossRef Qian, C., Ngan, H., Liu, Y., & Ni, L. M. (2011). Cardinality estimation for large-scale RFID systems. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1441–1454.CrossRef
22.
Zurück zum Zitat Kodialam, M., Nandagopal, T., & Lau, W. C. (2007). Anonymous tracking using RFID tags. In Proceedings of IEEE INFOCOM, pp. 1217–1225. Kodialam, M., Nandagopal, T., & Lau, W. C. (2007). Anonymous tracking using RFID tags. In Proceedings of IEEE INFOCOM, pp. 1217–1225.
23.
Zurück zum Zitat Han, H., Sheng, B., Tan, C. C., Li, Q., Mao, W., & Lu, S. (2010). Counting RFID Tags Efficiently and Anonymously. In Proceedings of IEEE INFOCOM, pp. 1028–1036. Han, H., Sheng, B., Tan, C. C., Li, Q., Mao, W., & Lu, S. (2010). Counting RFID Tags Efficiently and Anonymously. In Proceedings of IEEE INFOCOM, pp. 1028–1036.
24.
Zurück zum Zitat Flajolet, P., & Martin, G. N. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182–209.MathSciNetCrossRef Flajolet, P., & Martin, G. N. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182–209.MathSciNetCrossRef
25.
Zurück zum Zitat Zhou, Z., Chen, B., & Yu, H. (2016). Understanding RFID counting protocols. IEEE/ACM Transactions on Networking, 24(1), 312–327.CrossRef Zhou, Z., Chen, B., & Yu, H. (2016). Understanding RFID counting protocols. IEEE/ACM Transactions on Networking, 24(1), 312–327.CrossRef
26.
Zurück zum Zitat Liu, X., Xie, X., Li, K., Xiao, B., Wu, J., Qi, H., et al. (2017). Fast tracking the population of key tags in large-scale anonymous RFID systems. IEEE/ACM Transactions on Networking, 25(1), 278–291. Liu, X., Xie, X., Li, K., Xiao, B., Wu, J., Qi, H., et al. (2017). Fast tracking the population of key tags in large-scale anonymous RFID systems. IEEE/ACM Transactions on Networking, 25(1), 278–291.
27.
Zurück zum Zitat Chen, H., Xue, G., & Wang, Z. (2017). Efficient and reliable missing tag identification for large-scale RFID systems with unknown tags. IEEE Internet Things Journals, 4(3), 736–748.CrossRef Chen, H., Xue, G., & Wang, Z. (2017). Efficient and reliable missing tag identification for large-scale RFID systems with unknown tags. IEEE Internet Things Journals, 4(3), 736–748.CrossRef
28.
Zurück zum Zitat Gong, W., Liu, J., Liu, K., & Liu, Y. (2017). Toward more rigorous and practical cardinality estimation for large-scale RFID systems. IEEE/ACM Transactions on Networking, 25(3), 1347–1358.CrossRef Gong, W., Liu, J., Liu, K., & Liu, Y. (2017). Toward more rigorous and practical cardinality estimation for large-scale RFID systems. IEEE/ACM Transactions on Networking, 25(3), 1347–1358.CrossRef
29.
Zurück zum Zitat Zhou, Z., & Chen, B. (2018). RFID counting over time-varying channels. In Proceedings of IEEE INFOCOM (pp. 1142–1150). Zhou, Z., & Chen, B. (2018). RFID counting over time-varying channels. In Proceedings of IEEE INFOCOM (pp. 1142–1150).
30.
Zurück zum Zitat Liu, X., Li, K., Liu, A. X., Guo, S., Shahzad, M., Wang, A. L., et al. (2017). Multi-category RFID estimation. IEEE/ACM Transactions on Networking, 25(1), 264–277.CrossRef Liu, X., Li, K., Liu, A. X., Guo, S., Shahzad, M., Wang, A. L., et al. (2017). Multi-category RFID estimation. IEEE/ACM Transactions on Networking, 25(1), 264–277.CrossRef
31.
Zurück zum Zitat “Information Technology—Radio Frequency Identification for Item Management—Part 6: Parameters for Air Interface Communications at 860 MHz to 960 MHz General,” ISO/IEC Standard 18000-6 (2013). “Information Technology—Radio Frequency Identification for Item Management—Part 6: Parameters for Air Interface Communications at 860 MHz to 960 MHz General,” ISO/IEC Standard 18000-6 (2013).
32.
Zurück zum Zitat Lai, Y.-C., Hsiao, L.-Y., Chen, H.-J., Lai, C.-N., & Lin, J.-W. (2013). A novel query tree protocol with bit tracking in RFID tag identification. IEEE Transactions on Mobile Computing, 12(10), 2063–2075.CrossRef Lai, Y.-C., Hsiao, L.-Y., Chen, H.-J., Lai, C.-N., & Lin, J.-W. (2013). A novel query tree protocol with bit tracking in RFID tag identification. IEEE Transactions on Mobile Computing, 12(10), 2063–2075.CrossRef
33.
Zurück zum Zitat Hossain, M. A., & Sarkar, N. I. (2018). A distributed multichannel MAC protocol for rendezvous establishment in cognitive radio Ad Hoc networks. Ad Hoc Network, 70, 44–60.CrossRef Hossain, M. A., & Sarkar, N. I. (2018). A distributed multichannel MAC protocol for rendezvous establishment in cognitive radio Ad Hoc networks. Ad Hoc Network, 70, 44–60.CrossRef
34.
Zurück zum Zitat Lopez, D. A., Rojas, C. A., Zapata, D. F., & Trujillo, E. R. (2018). Designing a MAC algorithm for equitable spectrum allocation in cognitive radio wireless networks. Wireless Personal Communications, 98(1), 363–394.CrossRef Lopez, D. A., Rojas, C. A., Zapata, D. F., & Trujillo, E. R. (2018). Designing a MAC algorithm for equitable spectrum allocation in cognitive radio wireless networks. Wireless Personal Communications, 98(1), 363–394.CrossRef
35.
Zurück zum Zitat Kadam, S., Prabhu, D., Rathi, N., Chaki, P., & Kasbekar, G. S. (2019). Exploiting group structure in MAC protocol design for multichannel Ad Hoc cognitive radio networks. IEEE Transactions on Vehicular Technology, 68(1), 893–907.CrossRef Kadam, S., Prabhu, D., Rathi, N., Chaki, P., & Kasbekar, G. S. (2019). Exploiting group structure in MAC protocol design for multichannel Ad Hoc cognitive radio networks. IEEE Transactions on Vehicular Technology, 68(1), 893–907.CrossRef
36.
Zurück zum Zitat Feng, P., Bai, Y., Huang, J., Wang, W., Gu, Y., & Liu, S. (2019). CogMOR-MAC: A Cognitive Multi-Channel Opportunistic Reservation MAC for Multi-UAVs Ad Hoc Networks. Computer and Communication, 136, 30–42.CrossRef Feng, P., Bai, Y., Huang, J., Wang, W., Gu, Y., & Liu, S. (2019). CogMOR-MAC: A Cognitive Multi-Channel Opportunistic Reservation MAC for Multi-UAVs Ad Hoc Networks. Computer and Communication, 136, 30–42.CrossRef
37.
Zurück zum Zitat Liu, Y., Yu, R., Pan, M., Zhang, Y., & Xie, S. (2017). SD-MAC: Spectrum database-driven MAC protocol for cognitive machine-to-machine networks. IEEE Transactions on Vehicular Technology, 66(2), 1456–1467.CrossRef Liu, Y., Yu, R., Pan, M., Zhang, Y., & Xie, S. (2017). SD-MAC: Spectrum database-driven MAC protocol for cognitive machine-to-machine networks. IEEE Transactions on Vehicular Technology, 66(2), 1456–1467.CrossRef
38.
Zurück zum Zitat Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on cognitive radio for Internet of Things. Journal of Network and Computer Applications, 89, 14–25.CrossRef Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on cognitive radio for Internet of Things. Journal of Network and Computer Applications, 89, 14–25.CrossRef
39.
Zurück zum Zitat Zikria, Y. B., Ishmanov, F., Afzal, M. K., Kim, S. W., Nam, S. Y., & Yu, H. (2017). Opportunistic channel selection MAC protocol for cognitive radio Ad Hoc sensor networks in the Internet of Things. Sustainable Computing: Informatics and Systems, 18, 112–120. Zikria, Y. B., Ishmanov, F., Afzal, M. K., Kim, S. W., Nam, S. Y., & Yu, H. (2017). Opportunistic channel selection MAC protocol for cognitive radio Ad Hoc sensor networks in the Internet of Things. Sustainable Computing: Informatics and Systems, 18, 112–120.
40.
Zurück zum Zitat Miao, G., Azari, A., & Hwang, T. (2016). \(E^{2}\) -MAC: energy efficient medium access for massive M2M communications. IEEE Transactions on Communications, 64(11), 4720–4735.CrossRef Miao, G., Azari, A., & Hwang, T. (2016). \(E^{2}\) -MAC: energy efficient medium access for massive M2M communications. IEEE Transactions on Communications, 64(11), 4720–4735.CrossRef
41.
Zurück zum Zitat Saad, W., El-Feshawy, S. A., Shokair, M., & Dessouky, M. I. (2018). Optimised approach based on hybrid MAC protocol for M2M networks. IET Network, 7(6), 393–397.CrossRef Saad, W., El-Feshawy, S. A., Shokair, M., & Dessouky, M. I. (2018). Optimised approach based on hybrid MAC protocol for M2M networks. IET Network, 7(6), 393–397.CrossRef
42.
Zurück zum Zitat Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., et al. (2016). Machine-to-machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83–105.CrossRef Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., et al. (2016). Machine-to-machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83–105.CrossRef
43.
Zurück zum Zitat Wang, H., & Fapojuwo, A. O. (2017). A survey of enabling technologies of low power and long range machine-to-machine communications. IEEE Communications Surveys and Tutorials, 19(4), 2621–2639.CrossRef Wang, H., & Fapojuwo, A. O. (2017). A survey of enabling technologies of low power and long range machine-to-machine communications. IEEE Communications Surveys and Tutorials, 19(4), 2621–2639.CrossRef
Metadaten
Titel
Fast node cardinality estimation and cognitive MAC protocol design for heterogeneous machine-to-machine networks
verfasst von
Sachin Kadam
Chaitanya S. Raut
Aman Deep Meena
Gaurav S. Kasbekar
Publikationsdatum
18.03.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02291-6

Weitere Artikel der Ausgabe 6/2020

Wireless Networks 6/2020 Zur Ausgabe

Neuer Inhalt