Skip to main content
Erschienen in: Journal of Scientific Computing 1/2016

19.03.2015

Fast Numerical Contour Integral Method for Fractional Diffusion Equations

verfasst von: Hong-Kui Pang, Hai-Wei Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The numerical contour integral method with hyperbolic contour is exploited to solve space-fractional diffusion equations. By making use of the Toeplitz-like structure of spatial discretized matrices and the relevant properties, the regions that the spectra of resulting matrices lie in are derived. The resolvent norms of the resulting matrices are also shown to be bounded outside of the regions. Suitable parameters in the hyperbolic contour are selected based on these regions to solve the fractional diffusion equations. Numerical experiments are provided to demonstrate the efficiency of our contour integral methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211–240 (2001)MathSciNetCrossRef Benson, D., Schumer, R., Meerschaert, M., Wheatcraft, S.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Med. 42, 211–240 (2001)MathSciNetCrossRef
2.
Zurück zum Zitat Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)MATHCrossRef
3.
Zurück zum Zitat Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43, 2144–2171 (2005)MATHMathSciNetCrossRef Gavrilyuk, I.P., Makarov, V.L.: Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces. SIAM J. Numer. Anal. 43, 2144–2171 (2005)MATHMathSciNetCrossRef
4.
Zurück zum Zitat Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)MATHCrossRef Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)MATHCrossRef
5.
Zurück zum Zitat Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRef
6.
Zurück zum Zitat in ’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33, 763–785 (2011)MATHMathSciNetCrossRef in ’t Hout, K.J., Weideman, J.A.C.: A contour integral method for the Black–Scholes and Heston equations. SIAM J. Sci. Comput. 33, 763–785 (2011)MATHMathSciNetCrossRef
7.
Zurück zum Zitat Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)CrossRef Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)CrossRef
8.
Zurück zum Zitat Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time-dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)MATHMathSciNetCrossRef Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time-dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)MATHMathSciNetCrossRef
9.
Zurück zum Zitat Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MATHMathSciNetCrossRef Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)MATHMathSciNetCrossRef
10.
11.
Zurück zum Zitat Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNet Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8, 1016–1051 (2010)MathSciNet
12.
Zurück zum Zitat Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MATHMathSciNetCrossRef Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MATHMathSciNetCrossRef
14.
Zurück zum Zitat López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mapping. Appl. Numer. Math. 51, 289–303 (2004)MATHMathSciNetCrossRef López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mapping. Appl. Numer. Math. 51, 289–303 (2004)MATHMathSciNetCrossRef
15.
Zurück zum Zitat López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)MATHMathSciNetCrossRef López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)MATHMathSciNetCrossRef
16.
Zurück zum Zitat Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006) Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)
17.
Zurück zum Zitat Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM Z. Angew. Math. Mech. 48, T83–T85 (1968)MATHMathSciNet Martensen, E.: Zur numerischen Auswertung uneigentlicher Integrale. ZAMM Z. Angew. Math. Mech. 48, T83–T85 (1968)MATHMathSciNet
18.
Zurück zum Zitat Mclean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)MATHMathSciNetCrossRef Mclean, W., Sloan, I.H., Thomée, V.: Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102, 497–522 (2006)MATHMathSciNetCrossRef
19.
Zurück zum Zitat Mclean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transformation. IMA J. Numer. Anal. 24, 439–463 (2004)MATHMathSciNetCrossRef Mclean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transformation. IMA J. Numer. Anal. 24, 439–463 (2004)MATHMathSciNetCrossRef
20.
Zurück zum Zitat Mclean, W., Thomée, V.: Numerical solution via Laplace transformation of a fractional-order evolution equation. J. Integr. Equ. Appl. 22, 57–94 (2010)MATHCrossRef Mclean, W., Thomée, V.: Numerical solution via Laplace transformation of a fractional-order evolution equation. J. Integr. Equ. Appl. 22, 57–94 (2010)MATHCrossRef
21.
Zurück zum Zitat Mclean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)MATHMathSciNetCrossRef Mclean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)MATHMathSciNetCrossRef
22.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–diffusion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MATHMathSciNetCrossRef Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–diffusion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MATHMathSciNetCrossRef
23.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MATHMathSciNetCrossRef Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MATHMathSciNetCrossRef
24.
Zurück zum Zitat Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MATHMathSciNetCrossRef Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)MATHMathSciNetCrossRef
26.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
27.
Zurück zum Zitat Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)MATHMathSciNetCrossRef Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)MATHMathSciNetCrossRef
28.
Zurück zum Zitat Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)MATHCrossRef Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica 314, 749–755 (2002)MATHCrossRef
29.
30.
Zurück zum Zitat Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46, 871–887 (2005)MathSciNet Shen, S., Liu, F.: Error analysis of an explicit finite difference approximation for the space fractional diffusion. ANZIAM J. 46, 871–887 (2005)MathSciNet
31.
Zurück zum Zitat Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)CrossRef Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic problems based on contour integral representation and quadrature. Math. Comput. 69, 177–195 (1999)CrossRef
32.
Zurück zum Zitat Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)MATHMathSciNetCrossRef Sheen, D., Sloan, I.H., Thomée, V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23, 269–299 (2003)MATHMathSciNetCrossRef
34.
Zurück zum Zitat Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MATHMathSciNetCrossRef Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)MATHMathSciNetCrossRef
35.
Zurück zum Zitat Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)MATHMathSciNetCrossRef Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)MATHMathSciNetCrossRef
37.
Zurück zum Zitat Tilli, P.: Singular values and eigenvalues of non-Hermitian block Toeplitz matrices. Linear Algebra Appl. 272, 59–89 (1998)MATHMathSciNetCrossRef Tilli, P.: Singular values and eigenvalues of non-Hermitian block Toeplitz matrices. Linear Algebra Appl. 272, 59–89 (1998)MATHMathSciNetCrossRef
38.
Zurück zum Zitat Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MATHMathSciNetCrossRef Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)MATHMathSciNetCrossRef
39.
Zurück zum Zitat Wang, H., Wang, K.: An \(O(N\log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MATHMathSciNetCrossRef Wang, H., Wang, K.: An \(O(N\log ^2N)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)MATHMathSciNetCrossRef
40.
Zurück zum Zitat Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MATHMathSciNetCrossRef Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MATHMathSciNetCrossRef
42.
Zurück zum Zitat Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)MATHMathSciNetCrossRef Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76, 1341–1356 (2007)MATHMathSciNetCrossRef
43.
Zurück zum Zitat Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MATHMathSciNetCrossRef Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013)MATHMathSciNetCrossRef
Metadaten
Titel
Fast Numerical Contour Integral Method for Fractional Diffusion Equations
verfasst von
Hong-Kui Pang
Hai-Wei Sun
Publikationsdatum
19.03.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2016
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0012-9

Weitere Artikel der Ausgabe 1/2016

Journal of Scientific Computing 1/2016 Zur Ausgabe