Skip to main content

03.02.2025 | Chassis, Electrical and Electronics, Vehicle Dynamics and Control

Fast Recognition Method of Driver Braking Intention Based on Partial Braking Pedal Signals

verfasst von: Songche Xiao, Xiangwen Zhang, Mingbin Tang

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The correct recognition of driver’s braking intention is the foundation to realize the brake-by-wire system, and it is also the key to improving the energy recovery efficiency of electric vehicles with the hybrid braking system. However, the recognition speed and accuracy interact with each other, which increases the recognition difficulty. A fast recognition method is proposed based on partial brake pedal signals to improve the recognition speed and accuracy simultaneously. The brake pedal signal was decomposed into intrinsic mode function components with the whale optimization algorithm optimized variational mode decomposition (WOA-VMD), and the samples were extract from the components by the sample entropy. The effective features were selected with the grey relative analysis (GRA) algorithm. The braking intention recognition model was built with the whale optimization algorithm optimized support vector machine (WOA-SVM) algorithm and validated on the dSPACE semi-physical simulation platform. The results show that the noise in the signal was reduced effectively with the WOA-VMD algorithm, and the irrelevant features were filtered out effectively with the GRA algorithm, and the recognition speed and accuracy were improved significantly with the WOA-SVM algorithm. Compared with traditional algorithms, the accuracy increases by 12.67%, and the time is shortened to 0.223 s.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Belova, T. I., Torikov, V. E., Titenok, A. V., et al. (2021). Increasing the safety of the vehicle driver using the braking distance detectors. Natural Volatiles & Essential Oils, 8(4), 7830–7839.MATH Belova, T. I., Torikov, V. E., Titenok, A. V., et al. (2021). Increasing the safety of the vehicle driver using the braking distance detectors. Natural Volatiles & Essential Oils, 8(4), 7830–7839.MATH
Zurück zum Zitat Caliskan, U., & Patoglu, V. (2020). Efficacy of haptic pedal feel compensation on driving with regenerative braking. IEEE Transactions on Haptics, 13(1), 175–182.CrossRefMATH Caliskan, U., & Patoglu, V. (2020). Efficacy of haptic pedal feel compensation on driving with regenerative braking. IEEE Transactions on Haptics, 13(1), 175–182.CrossRefMATH
Zurück zum Zitat Deng, C., Wu, C. Z., Lyu, N. C., & Huang, Z. (2017). Driving style recognition method using braking characteristics based on hidden Markov model. Public Library of Science One, 12(8), e0182419. Deng, C., Wu, C. Z., Lyu, N. C., & Huang, Z. (2017). Driving style recognition method using braking characteristics based on hidden Markov model. Public Library of Science One, 12(8), e0182419.
Zurück zum Zitat Girbés, V., Armesto, L., Dols, J., & Tornero, J. (2017). An active safety system for low-speed bus braking assistance. IEEE Transactions on Intelligent Transportation Systems, 18(2), 377–387.CrossRefMATH Girbés, V., Armesto, L., Dols, J., & Tornero, J. (2017). An active safety system for low-speed bus braking assistance. IEEE Transactions on Intelligent Transportation Systems, 18(2), 377–387.CrossRefMATH
Zurück zum Zitat Goli, A., Tirkolaee, E. B., & Aydın, N. S. (2021). Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE Transactions on Fuzzy Systems, 29(12), 3686–3695.CrossRefMATH Goli, A., Tirkolaee, E. B., & Aydın, N. S. (2021). Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE Transactions on Fuzzy Systems, 29(12), 3686–3695.CrossRefMATH
Zurück zum Zitat Han, M., Zhang, R., Qiu, T., et al. (2019). Multivariate chaotic time series prediction based on improved grey relational analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(10), 2144–2154.CrossRefMATH Han, M., Zhang, R., Qiu, T., et al. (2019). Multivariate chaotic time series prediction based on improved grey relational analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(10), 2144–2154.CrossRefMATH
Zurück zum Zitat Haufe, S., Kim, J. W., Kim, I. H., et al. (2014). Electrophysiology-based detection of emergency braking intention in real-world driving. Journal of Neural Engineering, 11(5), 056011.CrossRefMATH Haufe, S., Kim, J. W., Kim, I. H., et al. (2014). Electrophysiology-based detection of emergency braking intention in real-world driving. Journal of Neural Engineering, 11(5), 056011.CrossRefMATH
Zurück zum Zitat Hernandez, L., Martinez, M., Ferrandez, J., et al. (2018). EEG-based detection of braking intention under different car driving conditions. Frontiers in Neuro Informatics, 12(5), 1–14.MATH Hernandez, L., Martinez, M., Ferrandez, J., et al. (2018). EEG-based detection of braking intention under different car driving conditions. Frontiers in Neuro Informatics, 12(5), 1–14.MATH
Zurück zum Zitat Ji, F., Pan, Y., Zhou, Y., et al. (2020). Energy recovery based on pedal situation for regenerative braking system of electric vehicle. Vehicle System Dynamics, 58(1), 144–173.CrossRefMATH Ji, F., Pan, Y., Zhou, Y., et al. (2020). Energy recovery based on pedal situation for regenerative braking system of electric vehicle. Vehicle System Dynamics, 58(1), 144–173.CrossRefMATH
Zurück zum Zitat Ji, Y., Zhang, J., He, C., et al. (2023). Wheel braking pressure control based on central booster electrohydraulic brake-by-wire system. IEEE Transactions on Transportation Electrification, 9(1), 222–235.CrossRefMATH Ji, Y., Zhang, J., He, C., et al. (2023). Wheel braking pressure control based on central booster electrohydraulic brake-by-wire system. IEEE Transactions on Transportation Electrification, 9(1), 222–235.CrossRefMATH
Zurück zum Zitat Luo, J., Chen, J., Huang, Q., et al. (2023). Joint application of VMD and IWOA-PNN for gearbox fault classification via current signal. IEEE Sensors Journal, 23(12), 13155–13164.CrossRefMATH Luo, J., Chen, J., Huang, Q., et al. (2023). Joint application of VMD and IWOA-PNN for gearbox fault classification via current signal. IEEE Sensors Journal, 23(12), 13155–13164.CrossRefMATH
Zurück zum Zitat Maldonado, S., Merigó, J., & Miranda, J. (2020). IOWA-SVM: A density-based weighting strategy for SVM classification via OWA operators. IEEE Transactions on Fuzzy Systems, 28(9), 2143–2150.CrossRefMATH Maldonado, S., Merigó, J., & Miranda, J. (2020). IOWA-SVM: A density-based weighting strategy for SVM classification via OWA operators. IEEE Transactions on Fuzzy Systems, 28(9), 2143–2150.CrossRefMATH
Zurück zum Zitat Pan, N., Yu, L. Y., & Song, J. (2016). Braking intention classification and identification considering braking comfort for electric vehicles. Journal of Tsinghua University (Science and Technology), 56(10), 1097–1103.MATH Pan, N., Yu, L. Y., & Song, J. (2016). Braking intention classification and identification considering braking comfort for electric vehicles. Journal of Tsinghua University (Science and Technology), 56(10), 1097–1103.MATH
Zurück zum Zitat Qing, D. T., Chen, M. J., Chao, Y. H., et al. (2024). Research on driving style classification and recognition method based on driving events. China Mechanical Engineering, 35(9), 534–1541.MATH Qing, D. T., Chen, M. J., Chao, Y. H., et al. (2024). Research on driving style classification and recognition method based on driving events. China Mechanical Engineering, 35(9), 534–1541.MATH
Zurück zum Zitat Rasch, A., & Dozza, M. (2022). Modeling drivers’ strategy when overtaking cyclists in the presence of oncoming traffic. IEEE Transactions on Intelligent Transportation Systems, 23(3), 2180–2189.CrossRefMATH Rasch, A., & Dozza, M. (2022). Modeling drivers’ strategy when overtaking cyclists in the presence of oncoming traffic. IEEE Transactions on Intelligent Transportation Systems, 23(3), 2180–2189.CrossRefMATH
Zurück zum Zitat Tan, C., Song, Y. D., Si, S. Z., et al. (2024). Improved sliding mode control of clamping force in electronic mechanical brake based on super-twisting extended state observer. Journal of Jilin University(Engineering and Technology Edition), 1–10. Tan, C., Song, Y. D., Si, S. Z., et al. (2024). Improved sliding mode control of clamping force in electronic mechanical brake based on super-twisting extended state observer. Journal of Jilin University(Engineering and Technology Edition), 1–10.
Zurück zum Zitat Todeschini, F., Formentin, S., Panzani, G., et al. (2015). Nonlinear pressure control for BBW systems via dead-zone and antiwindup compensation. IEEE Transactions on Control Systems Technology, 24(4), 1–13.MATH Todeschini, F., Formentin, S., Panzani, G., et al. (2015). Nonlinear pressure control for BBW systems via dead-zone and antiwindup compensation. IEEE Transactions on Control Systems Technology, 24(4), 1–13.MATH
Zurück zum Zitat Tran, C., Doshi, A., & Trivedi, M. M. (2012). Modeling and prediction of driver behavior by foot gesture analysis. Computer Vision and Image Understanding, 116(3), 435–445.CrossRefMATH Tran, C., Doshi, A., & Trivedi, M. M. (2012). Modeling and prediction of driver behavior by foot gesture analysis. Computer Vision and Image Understanding, 116(3), 435–445.CrossRefMATH
Zurück zum Zitat Ur, R. N., & Aftab, H. (2019). Multivariate variational mode decomposition. IEEE Transactions on Signal Processing, 67(23), 6039–6053.MathSciNetCrossRefMATH Ur, R. N., & Aftab, H. (2019). Multivariate variational mode decomposition. IEEE Transactions on Signal Processing, 67(23), 6039–6053.MathSciNetCrossRefMATH
Zurück zum Zitat Wang, B., Wang, L. D., Tang, X. Z., & Yang, S. J. (2019). A braking intention identification method based on data mining for electric vehicles. Mathematical Problems in Engineering, 2019, 1–8.MATH Wang, B., Wang, L. D., Tang, X. Z., & Yang, S. J. (2019). A braking intention identification method based on data mining for electric vehicles. Mathematical Problems in Engineering, 2019, 1–8.MATH
Zurück zum Zitat Wang, W., Xi, J., & Zhao, D. (2018). Learning and inferring a driver’s braking action in car-following scenarios. IEEE Transactions on Vehicular Technology, 67(5), 3887–3899.CrossRefMATH Wang, W., Xi, J., & Zhao, D. (2018). Learning and inferring a driver’s braking action in car-following scenarios. IEEE Transactions on Vehicular Technology, 67(5), 3887–3899.CrossRefMATH
Zurück zum Zitat Wei, L. T., Liu, Y. C., Wang, X. Y., et al. (2024). Pressure control strategy for brake by wire systems based on hierarchical structure. Journal of Mechanical Engineering, 63(10), 487–496.MATH Wei, L. T., Liu, Y. C., Wang, X. Y., et al. (2024). Pressure control strategy for brake by wire systems based on hierarchical structure. Journal of Mechanical Engineering, 63(10), 487–496.MATH
Zurück zum Zitat Wen, J., Wu, C., Zhang, R., et al. (2020). Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model. Accident Analysis & Prevention, 148, 105800.CrossRef Wen, J., Wu, C., Zhang, R., et al. (2020). Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model. Accident Analysis & Prevention, 148, 105800.CrossRef
Zurück zum Zitat Yang, W., Liu, J. J., & Liu, J. Y. (2021). Active anti-collision warning model considering the driver’s intention of the vehicle ahead under internet of vehicles. Journal of Mechanical Engineering, 57(22), 284–295.CrossRefMATH Yang, W., Liu, J. J., & Liu, J. Y. (2021). Active anti-collision warning model considering the driver’s intention of the vehicle ahead under internet of vehicles. Journal of Mechanical Engineering, 57(22), 284–295.CrossRefMATH
Zurück zum Zitat Yuksela, S., & Atmaca, S. (2020). Driver’s black box: A system for driver risk assessment using machine learning and fuzzy logic. Journal of Intelligent Transportation Systems, 25(5), 482–500.CrossRefMATH Yuksela, S., & Atmaca, S. (2020). Driver’s black box: A system for driver risk assessment using machine learning and fuzzy logic. Journal of Intelligent Transportation Systems, 25(5), 482–500.CrossRefMATH
Zurück zum Zitat Zhang, L., Wang, L., Wang, Z. P., et al. (2024a). Research on brake pitch comfort control for distributed-drive electric vehicles based on brake-by-wire system. Journal of Mechanical Engineering, 60(10), 463–475.MATH Zhang, L., Wang, L., Wang, Z. P., et al. (2024a). Research on brake pitch comfort control for distributed-drive electric vehicles based on brake-by-wire system. Journal of Mechanical Engineering, 60(10), 463–475.MATH
Zurück zum Zitat Zhang, Q. X., Wang, J. X., Zhang, Y. H., et al. (2024b). Key technologies and research progress of brake-by-wire system for intelligent electric vehicles. Journal of Mechanical Engineering, 60(10), 339–365.MATH Zhang, Q. X., Wang, J. X., Zhang, Y. H., et al. (2024b). Key technologies and research progress of brake-by-wire system for intelligent electric vehicles. Journal of Mechanical Engineering, 60(10), 339–365.MATH
Zurück zum Zitat Zhao, L. J., Yang, S. C. and Qu, J. Y. (2023). Research progress of EMB systems key technology. Journal of Beijing University of Aeronautics and Astronautics, 1–12. Zhao, L. J., Yang, S. C. and Qu, J. Y. (2023). Research progress of EMB systems key technology. Journal of Beijing University of Aeronautics and Astronautics, 1–12.
Zurück zum Zitat Zhao, X., Wang, S., Ma, J., et al. (2019). Identification of driver’s braking intention based on a hybrid model of GHMM and GGAP-RBFNN. Neural Computing and Applications, 31(1), 161–174.CrossRefMATH Zhao, X., Wang, S., Ma, J., et al. (2019). Identification of driver’s braking intention based on a hybrid model of GHMM and GGAP-RBFNN. Neural Computing and Applications, 31(1), 161–174.CrossRefMATH
Zurück zum Zitat Zheng, H. Y., Ma, S. N., Fang, L. X., et al. (2019). Braking intention recognition algorithm based on electronic braking system in commercial vehicles. International Journal of Heavy Vehicle Systems, 26(3–4), 268–290.CrossRefMATH Zheng, H. Y., Ma, S. N., Fang, L. X., et al. (2019). Braking intention recognition algorithm based on electronic braking system in commercial vehicles. International Journal of Heavy Vehicle Systems, 26(3–4), 268–290.CrossRefMATH
Zurück zum Zitat Zhu, B., Zhang, Y., Zhao, J., et al. (2021). Personalized control strategy of electronic brake booster with driving behaviors identification. IEEE Transactions on Vehicular Technology, 70(12), 12593–12603.CrossRefMATH Zhu, B., Zhang, Y., Zhao, J., et al. (2021). Personalized control strategy of electronic brake booster with driving behaviors identification. IEEE Transactions on Vehicular Technology, 70(12), 12593–12603.CrossRefMATH
Metadaten
Titel
Fast Recognition Method of Driver Braking Intention Based on Partial Braking Pedal Signals
verfasst von
Songche Xiao
Xiangwen Zhang
Mingbin Tang
Publikationsdatum
03.02.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00216-w