Skip to main content

2017 | OriginalPaper | Buchkapitel

FastVentricle: Cardiac Segmentation with ENet

verfasst von : Jesse Lieman-Sifry, Matthieu Le, Felix Lau, Sean Sall, Daniel Golden

Erschienen in: Functional Imaging and Modelling of the Heart

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cardiac Magnetic Resonance (CMR) imaging is commonly used to assess cardiac structure and function. One disadvantage of CMR is that postprocessing of exams is tedious. Without automation, precise assessment of cardiac function via CMR typically requires an annotator to spend tens of minutes per case manually contouring ventricular structures. Automatic contouring can lower the required time per patient by generating contour suggestions that can be lightly modified by the annotator. Fully convolutional networks (FCNs), a variant of convolutional neural networks, have been used to rapidly advance the state-of-the-art in automated segmentation, which makes FCNs a natural choice for ventricular segmentation. However, FCNs are limited by their computational cost, which increases the monetary cost and degrades the user experience of production systems. To combat this shortcoming, we have developed the FastVentricle architecture, an FCN architecture for ventricular segmentation based on the recently developed ENet architecture. FastVentricle is 4\(\times \) faster and runs with 6\(\times \) less memory than the previous state-of-the-art ventricular segmentation architecture while still maintaining excellent clinical accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)CrossRefMATH Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)CrossRefMATH
2.
Zurück zum Zitat Choa, J., Benkeserb, P.J.: Cardiac segmentation by a velocity-aided active contour model. Comput. Med. Imag. Graph. 30, 31–41 (2006)CrossRef Choa, J., Benkeserb, P.J.: Cardiac segmentation by a velocity-aided active contour model. Comput. Med. Imag. Graph. 30, 31–41 (2006)CrossRef
3.
Zurück zum Zitat Zhu, W., et al.: A geodesic-active-contour-based variational model for short-axis cardiac MRI segmentation. Int. J. Comput. Math. 90(1), 124–139 (2013)CrossRefMATH Zhu, W., et al.: A geodesic-active-contour-based variational model for short-axis cardiac MRI segmentation. Int. J. Comput. Math. 90(1), 124–139 (2013)CrossRefMATH
4.
Zurück zum Zitat Pluempitiwiriyawej, C., et al.: STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans. Med. Imag. 24, 593–603 (2005)CrossRef Pluempitiwiriyawej, C., et al.: STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans. Med. Imag. 24, 593–603 (2005)CrossRef
5.
Zurück zum Zitat Schwarz, T., Heimann, T., Wolf, I., Meinzer, H.: 3d heart segmentation and volumetry using deformable shape models. In: Computers in Cardiology, pp. 741–744. IEEE (2007) Schwarz, T., Heimann, T., Wolf, I., Meinzer, H.: 3d heart segmentation and volumetry using deformable shape models. In: Computers in Cardiology, pp. 741–744. IEEE (2007)
6.
Zurück zum Zitat Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)CrossRef Petitjean, C., Dacher, J.N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)CrossRef
7.
Zurück zum Zitat Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155–195 (2016)CrossRef Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 155–195 (2016)CrossRef
8.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE CVPR, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE CVPR, pp. 3431–3440 (2015)
9.
Zurück zum Zitat Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint (2016). arXiv:1604.00494 Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint (2016). arXiv:​1604.​00494
10.
Zurück zum Zitat Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE ICCV, pp. 1520–1528 (2015) Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE ICCV, pp. 1520–1528 (2015)
11.
Zurück zum Zitat Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28 CrossRef Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.​1007/​978-3-319-24574-4_​28 CrossRef
12.
Zurück zum Zitat Lau, H.K., et al.: DeepVentricle: automated cardiac MRI ventricle segmentation using deep learning. In: Conference on Machine Intelligence in Medical Imaging (2016) Lau, H.K., et al.: DeepVentricle: automated cardiac MRI ventricle segmentation using deep learning. In: Conference on Machine Intelligence in Medical Imaging (2016)
14.
Zurück zum Zitat Paszke, A., Chaurasia, A., et al.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint (2016). arXiv:1606.02147 Paszke, A., Chaurasia, A., et al.: Enet: a deep neural network architecture for real-time semantic segmentation. arXiv preprint (2016). arXiv:​1606.​02147
15.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)
18.
Zurück zum Zitat Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint (2016). arXiv:1603.04467 Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint (2016). arXiv:​1603.​04467
20.
Zurück zum Zitat Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)MathSciNetMATH Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)MathSciNetMATH
21.
Zurück zum Zitat Bland, J.M., Altman, D.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986)CrossRef Bland, J.M., Altman, D.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476), 307–310 (1986)CrossRef
22.
Zurück zum Zitat Suinesiaputra, A., et al.: Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J. Cardiovas. Magn. Reson. 17(1), 63 (2015)CrossRef Suinesiaputra, A., et al.: Quantification of LV function and mass by cardiovascular magnetic resonance: multi-center variability and consensus contours. J. Cardiovas. Magn. Reson. 17(1), 63 (2015)CrossRef
Metadaten
Titel
FastVentricle: Cardiac Segmentation with ENet
verfasst von
Jesse Lieman-Sifry
Matthieu Le
Felix Lau
Sean Sall
Daniel Golden
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59448-4_13