Skip to main content
Erschienen in: Journal of Materials Science 17/2021

08.03.2021 | Computation & theory

Fatigue and its effect on the mechanical and thermal transport properties of polycrystalline graphene

verfasst von: Shun Zhang, Jin Zhang

Erschienen in: Journal of Materials Science | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fatigue failure of graphene plays an important role in determining the service life of many graphene-based nanodevices. In this paper, the fatigue behaviours of polycrystalline graphene are investigated by using molecular dynamics (MD) simulations. The results show that the fatigue process of polycrystalline graphene contains three stages, which, successively, are the initiation of microvoids, formation of large cracks and rapid propagation of cracks. The loading amplitude, grain size and temperature can greatly affect the fatigue properties. Evolutions of the mechanical and thermal transport properties of polycrystalline graphene during the fatigue process are also investigated by MD simulations. No significant changes are found in these material properties in the first two stages of fatigue. However, a dramatic decrease in the Young’s modulus, tensile strength and thermal conductivity is found in the last stage. The large cracks occurring in the last stage are responsible for the reduced Young’s modulus and tensile strength, because they can reduce the effective stiffness of polycrystalline graphene and induce the stress concentration in graphene. Meanwhile, large cracks also can reduce the heat flux and, meanwhile, increase the phonon scattering in polycrystalline graphene, both of which account for the reduced thermal conductivity observed in the last stage of fatigue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Yazyev OV, Louie SG (2010) Electronic transport in polycrystalline graphene. Nat Mater 9:806–809 Yazyev OV, Louie SG (2010) Electronic transport in polycrystalline graphene. Nat Mater 9:806–809
2.
Zurück zum Zitat Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470 Sarma SD, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407–470
3.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581 Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581
4.
Zurück zum Zitat Gu X, Wei Y, Yin X, Li B, Yang R (2018) Colloquium: phononic thermal properties of two-dimensional materials. Rev Mod Phys 90:041002 Gu X, Wei Y, Yin X, Li B, Yang R (2018) Colloquium: phononic thermal properties of two-dimensional materials. Rev Mod Phys 90:041002
5.
Zurück zum Zitat Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388 Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388
6.
Zurück zum Zitat Lee GH, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340:1073–1076 Lee GH, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J (2013) High-strength chemical-vapor-deposited graphene and grain boundaries. Science 340:1073–1076
7.
Zurück zum Zitat Cao GX, Gao HJ (2019) Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog Mater Sci 103:558–595 Cao GX, Gao HJ (2019) Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog Mater Sci 103:558–595
8.
Zurück zum Zitat Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907 Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907
9.
Zurück zum Zitat Geim AK, MacDonald AH (2007) Graphene: exploring carbon flatland. Phys Today 60:35–41 Geim AK, MacDonald AH (2007) Graphene: exploring carbon flatland. Phys Today 60:35–41
10.
Zurück zum Zitat Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710 Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710
11.
Zurück zum Zitat Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Ruoff RS, Colombo L (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314 Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Ruoff RS, Colombo L (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314
12.
Zurück zum Zitat Zhang JF, Zhao JJ (2013) Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries. Carbon 55:151–159 Zhang JF, Zhao JJ (2013) Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries. Carbon 55:151–159
13.
Zurück zum Zitat Bagri A, Kim SP, Ruoff RS, Shenoy VB (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 11:3917–3921 Bagri A, Kim SP, Ruoff RS, Shenoy VB (2011) Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett 11:3917–3921
14.
Zurück zum Zitat Wu PH, Quek SS, Sha ZD, Dong ZL, Liu XJ, Zhang G, Pei QX, Zhang YW (2014) Thermal transport behavior of polycrystalline graphene: a molecular dynamics study. J Appl Phys 116:204303 Wu PH, Quek SS, Sha ZD, Dong ZL, Liu XJ, Zhang G, Pei QX, Zhang YW (2014) Thermal transport behavior of polycrystalline graphene: a molecular dynamics study. J Appl Phys 116:204303
15.
Zurück zum Zitat Mortazavi B, Pötschke M, Cuniberti G (2014) Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale 6:3344–3352 Mortazavi B, Pötschke M, Cuniberti G (2014) Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale 6:3344–3352
16.
Zurück zum Zitat Fan ZY, Hirvonen P, Pereira LFC, Ervasti MM, Elder KR, Donadio D, Harju A, Ala-Nissila T (2017) Bimodal grain-size scaling of thermal transport in polycrystalline graphene from large-scale molecular dynamics simulations. Nano Lett 17:5919–5924 Fan ZY, Hirvonen P, Pereira LFC, Ervasti MM, Elder KR, Donadio D, Harju A, Ala-Nissila T (2017) Bimodal grain-size scaling of thermal transport in polycrystalline graphene from large-scale molecular dynamics simulations. Nano Lett 17:5919–5924
17.
Zurück zum Zitat Bazrafshan S, Rajabpour A (2018) Engineering of thermal transport in graphene using grain size, strain, nitrogen and boron doping; a multiscale modelling. Int J Heat Mass Tran 123:534–543 Bazrafshan S, Rajabpour A (2018) Engineering of thermal transport in graphene using grain size, strain, nitrogen and boron doping; a multiscale modelling. Int J Heat Mass Tran 123:534–543
18.
Zurück zum Zitat Zeng YQ, Lo CL, Zhang SJ, Chen ZH, Marconnet A (2020) Dynamically tunable thermal transport in polycrystalline graphene by strain engineering. Carbon 158:63–68 Zeng YQ, Lo CL, Zhang SJ, Chen ZH, Marconnet A (2020) Dynamically tunable thermal transport in polycrystalline graphene by strain engineering. Carbon 158:63–68
19.
Zurück zum Zitat Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330:946–948 Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330:946–948
20.
Zurück zum Zitat Zhang T, Li XY, Kadkhodaei S, Gao HJ (2012) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610 Zhang T, Li XY, Kadkhodaei S, Gao HJ (2012) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12:4605–4610
21.
Zurück zum Zitat Song ZG, Artyukhov VI, Yakobson BI, Xu ZP (2013) Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett 13:1829–1833 Song ZG, Artyukhov VI, Yakobson BI, Xu ZP (2013) Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett 13:1829–1833
22.
Zurück zum Zitat Mortazavi B, Cuniberti G (2014) Atomistic modeling of mechanical properties of polycrystalline graphene. Nanotechnology 25:215704 Mortazavi B, Cuniberti G (2014) Atomistic modeling of mechanical properties of polycrystalline graphene. Nanotechnology 25:215704
23.
Zurück zum Zitat Chen MQ, Quek SS, Sha ZD, Chiu CH, Pei QX, Zhang YW (2015) Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study. Carbon 85:135–146 Chen MQ, Quek SS, Sha ZD, Chiu CH, Pei QX, Zhang YW (2015) Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study. Carbon 85:135–146
24.
Zurück zum Zitat Becton M, Zeng XW, Wang XQ (2015) Computational study on the effects of annealing on the mechanical properties of polycrystalline graphene. Carbon 86:338–349 Becton M, Zeng XW, Wang XQ (2015) Computational study on the effects of annealing on the mechanical properties of polycrystalline graphene. Carbon 86:338–349
25.
Zurück zum Zitat Han J (2020) The transition from an inverse pseudo Hall-Petch to a pseudo Hall-Petch behavior in nanocrystalline graphene. Carbon 161:542–549 Han J (2020) The transition from an inverse pseudo Hall-Petch to a pseudo Hall-Petch behavior in nanocrystalline graphene. Carbon 161:542–549
27.
Zurück zum Zitat Murmu T, Adhikari S (2013) Nonlocal mass nanosensors based on vibrating monolayer graphene sheets. Sens Actuat B-Chem 188:1319–1327 Murmu T, Adhikari S (2013) Nonlocal mass nanosensors based on vibrating monolayer graphene sheets. Sens Actuat B-Chem 188:1319–1327
28.
Zurück zum Zitat Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490–493 Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490–493
29.
Zurück zum Zitat Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A (2011) Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat Nanotechnol 6:339–342 Eichler A, Moser J, Chaste J, Zdrojek M, Wilson-Rae I, Bachtold A (2011) Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat Nanotechnol 6:339–342
30.
Zurück zum Zitat Schutz W (1996) A history of fatigue. Eng Fract Mech 54:263–300 Schutz W (1996) A history of fatigue. Eng Fract Mech 54:263–300
31.
Zurück zum Zitat Schijve J (2003) Fatigue of structures and materials in the 20th century and the state of the art. Int J Fatigue 25:679–702 Schijve J (2003) Fatigue of structures and materials in the 20th century and the state of the art. Int J Fatigue 25:679–702
32.
Zurück zum Zitat Jeng YR, Tsai PC, Fang TH (2005) Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes. Phys Rev B 71:085411 Jeng YR, Tsai PC, Fang TH (2005) Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes. Phys Rev B 71:085411
33.
Zurück zum Zitat Chang WJ (2003) Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron Eng 65:239–246 Chang WJ (2003) Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading. Microelectron Eng 65:239–246
34.
Zurück zum Zitat Zhang H, Jiang C, Lu Y (2017) Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp Mech 57:495–500 Zhang H, Jiang C, Lu Y (2017) Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp Mech 57:495–500
35.
Zurück zum Zitat Luo J, Dahmen K, Liaw PK, Shi YF (2015) Low-cycle fatigue of metallic glass nanowires. Acta Mater 87:225–232 Luo J, Dahmen K, Liaw PK, Shi YF (2015) Low-cycle fatigue of metallic glass nanowires. Acta Mater 87:225–232
36.
Zurück zum Zitat Cui T, Mukherjee S, Sudeep PM, Colas G, Najafi F, Tam J, Ajayan PM, Singh CV, Sun Y, Filleter T (2020) Fatigue of graphene. Nat Mater 19:405–411 Cui T, Mukherjee S, Sudeep PM, Colas G, Najafi F, Tam J, Ajayan PM, Singh CV, Sun Y, Filleter T (2020) Fatigue of graphene. Nat Mater 19:405–411
37.
Zurück zum Zitat Cui T, Yip K, Hassan A, Wang GR, Liu XJ, Sun Y, Filleter T (2020) Graphene fatigue through van der Waals interactions. Sci Adv 6(42):eabb1335 Cui T, Yip K, Hassan A, Wang GR, Liu XJ, Sun Y, Filleter T (2020) Graphene fatigue through van der Waals interactions. Sci Adv 6(42):eabb1335
38.
Zurück zum Zitat Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19 Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19
39.
Zurück zum Zitat Yu QK, Jauregui LA, Wu W, Colby R, Tian JF, Su ZH, Cao HL, Liu ZH, Pandey D, Wei DG, Chung TF, Peng P, Guisinger NP, Stach EA, Bao JM, Pei SS, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443–449 Yu QK, Jauregui LA, Wu W, Colby R, Tian JF, Su ZH, Cao HL, Liu ZH, Pandey D, Wei DG, Chung TF, Peng P, Guisinger NP, Stach EA, Bao JM, Pei SS, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443–449
40.
Zurück zum Zitat Mortazavi B, Cuniberti G (2014) Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Adv 4:19137–19143 Mortazavi B, Cuniberti G (2014) Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Adv 4:19137–19143
41.
Zurück zum Zitat Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486 Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486
42.
Zurück zum Zitat Atalaya J, Isacsson A (2008) Jari M kinaret, continuum elastic modeling of graphene resonators. Nano Lett 8:4196–4200 Atalaya J, Isacsson A (2008) Jari M kinaret, continuum elastic modeling of graphene resonators. Nano Lett 8:4196–4200
43.
Zurück zum Zitat Wang YS, Huang L (2020) Flexural modes of graphene resonators derived from the reactive empirical bond-order potential. Phys Rev B 101:195409 Wang YS, Huang L (2020) Flexural modes of graphene resonators derived from the reactive empirical bond-order potential. Phys Rev B 101:195409
44.
Zurück zum Zitat Mortazavi B, Rahaman O, Dianat A, Rabczuk T (2016) Mechanical responses of borophene sheets: a first-principles study. Phys Chem Chem Phys 18:27405–27413 Mortazavi B, Rahaman O, Dianat A, Rabczuk T (2016) Mechanical responses of borophene sheets: a first-principles study. Phys Chem Chem Phys 18:27405–27413
45.
Zurück zum Zitat Zimmerman JA, Webb EB III, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Modell Simul Mater Sci Eng 12:S319–S332 Zimmerman JA, Webb EB III, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Modell Simul Mater Sci Eng 12:S319–S332
46.
Zurück zum Zitat Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106:6082–6085 Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106:6082–6085
47.
Zurück zum Zitat Ikeshoji T, Hafskjold B (1994) Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol Phys 81:251–261 Ikeshoji T, Hafskjold B (1994) Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol Phys 81:251–261
48.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565
49.
Zurück zum Zitat Lindsay L, Broido DA (2010) Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 82:205441 Lindsay L, Broido DA (2010) Optimized tersoff and brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 82:205441
50.
Zurück zum Zitat Sevik C, Sevinçli H, Cuniberti G, Çağın T (2011) Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett 11:4971–4977 Sevik C, Sevinçli H, Cuniberti G, Çağın T (2011) Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett 11:4971–4977
51.
Zurück zum Zitat Lindsay L, Broido DA, Mingo N (2010) Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys Rev B 82:161402(R) Lindsay L, Broido DA, Mingo N (2010) Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Phys Rev B 82:161402(R)
52.
Zurück zum Zitat Ruiz-Vargas CS, Zhuang HL, Huang PY, van der Zande AM, Garg S, McEuen PL, Muller DA, Hennig RG, Park J (2011) Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 11:2259–2263 Ruiz-Vargas CS, Zhuang HL, Huang PY, van der Zande AM, Garg S, McEuen PL, Muller DA, Hennig RG, Park J (2011) Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 11:2259–2263
53.
Zurück zum Zitat Lemaitre J (1992) A course on damage mechanics. Springer-Verlag, Berlin Lemaitre J (1992) A course on damage mechanics. Springer-Verlag, Berlin
54.
Zurück zum Zitat Chaboche JL, Lesne PM (1988) A non-linear continuous fatigue damage model. Fatigue Fract Eng Mater Struct 11:1–17 Chaboche JL, Lesne PM (1988) A non-linear continuous fatigue damage model. Fatigue Fract Eng Mater Struct 11:1–17
55.
Zurück zum Zitat Izadifar M, Abadi R, Jam AN, Rabczuk T (2017) Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene. Comput Mater Sci 138:435–447 Izadifar M, Abadi R, Jam AN, Rabczuk T (2017) Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene. Comput Mater Sci 138:435–447
56.
Zurück zum Zitat Mortazavi B, Ahzi S (2013) Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63:460–470 Mortazavi B, Ahzi S (2013) Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63:460–470
57.
Zurück zum Zitat Zandiatashbar A, Lee GH, An SJ, Lee S, Mathew N, Terrones M, Hayashi T, Picu CR, Hone J, Koratkar N (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186 Zandiatashbar A, Lee GH, An SJ, Lee S, Mathew N, Terrones M, Hayashi T, Picu CR, Hone J, Koratkar N (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186
58.
Zurück zum Zitat Broberg K (1999) Cracks and fracture. Academic Press, San Diego Broberg K (1999) Cracks and fracture. Academic Press, San Diego
59.
Zurück zum Zitat Ghasemi H, Rajabpour A, Akbarzadeh AH (2018) Tuning thermal conductivity of porous graphene by pore topology engineering: comparison of non-equilibrium molecular dynamics and finite element study. Int J Heat Mass Tran 123:261–271 Ghasemi H, Rajabpour A, Akbarzadeh AH (2018) Tuning thermal conductivity of porous graphene by pore topology engineering: comparison of non-equilibrium molecular dynamics and finite element study. Int J Heat Mass Tran 123:261–271
60.
Zurück zum Zitat Yarifard M, Davoodi J, Rafii-Tabar H (2016) In-plane thermal conductivity of graphene nanomesh: a molecular dynamics study. Comput Mater Sci 111:247–251 Yarifard M, Davoodi J, Rafii-Tabar H (2016) In-plane thermal conductivity of graphene nanomesh: a molecular dynamics study. Comput Mater Sci 111:247–251
61.
Zurück zum Zitat Zhang J (2018) Effects of cell irregularity on the thermal conductivity of carbon honeycombs. Carbon 131:127–136 Zhang J (2018) Effects of cell irregularity on the thermal conductivity of carbon honeycombs. Carbon 131:127–136
62.
Zurück zum Zitat Fan ZY, Pereira LFC, Hirvonen P, Ervasti MM, Elder KR, Donadio D, Ala-Nissila T, Harju A (2017) Thermal conductivity decomposition in two-dimensional materials: application to graphene. Phys Rev B 95:144309 Fan ZY, Pereira LFC, Hirvonen P, Ervasti MM, Elder KR, Donadio D, Ala-Nissila T, Harju A (2017) Thermal conductivity decomposition in two-dimensional materials: application to graphene. Phys Rev B 95:144309
Metadaten
Titel
Fatigue and its effect on the mechanical and thermal transport properties of polycrystalline graphene
verfasst von
Shun Zhang
Jin Zhang
Publikationsdatum
08.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05953-8

Weitere Artikel der Ausgabe 17/2021

Journal of Materials Science 17/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.